Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis/3.4/ClassificationSolution.cs @ 5681

Last change on this file since 5681 was 5649, checked in by gkronber, 14 years ago

#1418 Implemented classes for classification based on a discriminant function and thresholds and implemented interfaces and base classes for clustering.

File size: 4.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Optimization;
31using System;
32
33namespace HeuristicLab.Problems.DataAnalysis {
34  /// <summary>
35  /// Abstract base class for classification data analysis solutions
36  /// </summary>
37  [StorableClass]
38  public abstract class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
39    private const string TrainingAccuracyResultName = "Accuracy (training)";
40    private const string TestAccuracyResultName = "Accuracy (test)";
41    [StorableConstructor]
42    protected ClassificationSolution(bool deserializing) : base(deserializing) { }
43    protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
44      : base(original, cloner) {
45    }
46    public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
47      : base(model, problemData) {
48      double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
49      IEnumerable<double> originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
50      double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
51      IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
52
53      double trainingAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues);
54      double testAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTestClassValues, originalTestClassValues);
55
56      Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue(trainingAccuracy)));
57      Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue(testAccuracy)));
58    }
59
60    #region IClassificationSolution Members
61
62    public new IClassificationModel Model {
63      get { return (IClassificationModel)base.Model; }
64    }
65
66    public new IClassificationProblemData ProblemData {
67      get { return (IClassificationProblemData)base.ProblemData; }
68    }
69
70    public virtual IEnumerable<double> EstimatedClassValues {
71      get {
72        return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
73      }
74    }
75
76    public virtual IEnumerable<double> EstimatedTrainingClassValues {
77      get {
78        return GetEstimatedClassValues(ProblemData.TrainingIndizes);
79      }
80    }
81
82    public virtual IEnumerable<double> EstimatedTestClassValues {
83      get {
84        return GetEstimatedClassValues(ProblemData.TestIndizes);
85      }
86    }
87
88    public virtual IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
89      return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
90    }
91    #endregion
92  }
93}
Note: See TracBrowser for help on using the repository browser.