Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisEvaluator.cs @ 5593

Last change on this file since 5593 was 5586, checked in by mkommend, 14 years ago

#1418: Adapated DataAnalysisProblemData as well as RegressionProblemData to use parameters.

File size: 7.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Random;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
35  public abstract class SymbolicDataAnalysisEvaluator<T> : SingleSuccessorOperator,
36    ISymbolicDataAnalysisBoundedEvaluator<T>, ISymbolicDataAnalysisInterpreterOperator
37  where T : class, IDataAnalysisProblemData {
38    private const string RandomParameterName = "Random";
39    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
40    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
41    private const string ProblemDataParameterName = "ProblemData";
42    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
43    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
44    private const string SamplesStartParameterName = "SamplesStart";
45    private const string SamplesEndParameterName = "SamplesEnd";
46    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
47
48    #region parameter properties
49    public IValueLookupParameter<IRandom> RandomParameter {
50      get { return (IValueLookupParameter<IRandom>)Parameters[RandomParameterName]; }
51    }
52    public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
53      get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
54    }
55    public IValueLookupParameter<ISymbolicDataAnalysisTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
56      get { return (IValueLookupParameter<ISymbolicDataAnalysisTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
57    }
58    public IValueLookupParameter<T> ProblemDataParameter {
59      get { return (IValueLookupParameter<T>)Parameters[ProblemDataParameterName]; }
60    }
61
62    public IValueLookupParameter<IntValue> SamplesStartParameter {
63      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
64    }
65    public IValueLookupParameter<IntValue> SamplesEndParameter {
66      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
67    }
68
69    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
70      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
71    }
72    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
73      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
74    }
75
76    public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
77      get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
78    }
79    #endregion
80
81    #region properties
82    public T ProblemData {
83      get { return ProblemDataParameter.ActualValue; }
84    }
85
86    public IntValue SamplesStart {
87      get { return SamplesStartParameter.ActualValue; }
88    }
89    public IntValue SamplesEnd {
90      get { return SamplesEndParameter.ActualValue; }
91    }
92    public DoubleValue UpperEstimationLimit {
93      get { return UpperEstimationLimitParameter.ActualValue; }
94    }
95    public DoubleValue LowerEstimationLimit {
96      get { return LowerEstimationLimitParameter.ActualValue; }
97    }
98    public PercentValue RelativeNumberOfEvaluatedSamples {
99      get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
100    }
101    #endregion
102
103    [StorableConstructor]
104    protected SymbolicDataAnalysisEvaluator(bool deserializing) : base(deserializing) { }
105    protected SymbolicDataAnalysisEvaluator(SymbolicDataAnalysisEvaluator<T> original, Cloner cloner)
106      : base(original, cloner) {
107    }
108    public SymbolicDataAnalysisEvaluator()
109      : base() {
110      Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
111      Parameters.Add(new ValueLookupParameter<ISymbolicDataAnalysisTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
112      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
113      Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
114      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
115      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
116      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic data analysis trees."));
117      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic data analysis trees."));
118      Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
119    }
120
121    protected IEnumerable<int> GenerateRowsToEvaluate() {
122      int seed = RandomParameter.ActualValue.Next();
123      if (SamplesEnd.Value < SamplesStart.Value) throw new ArgumentException("Start value is larger than end value.");
124      int count = (int)((SamplesEnd.Value - SamplesStart.Value) * RelativeNumberOfEvaluatedSamples.Value);
125      if (count == 0) count = 1;
126      return RandomEnumerable.SampleRandomNumbers(seed, SamplesEnd.Value, SamplesStart.Value, count)
127        .Where(i => i < ProblemDataParameter.ActualValue.TestPartitionStart.Value || ProblemDataParameter.ActualValue.TestPartitionEnd.Value <= i);
128    }
129  }
130}
Note: See TracBrowser for help on using the repository browser.