[5557] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.
|
---|
| 36 | /// </summary>
|
---|
| 37 | [Item("SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.")]
|
---|
| 38 | [StorableClass]
|
---|
| 39 | public abstract class SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<T> : SymbolicDataAnalysisMultiObjectiveAnalyzer
|
---|
| 40 | where T : class, IDataAnalysisSolution {
|
---|
| 41 | private const string TrainingBestSolutionsParameterName = "Best training solutions";
|
---|
| 42 | private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities";
|
---|
| 43 | private const string TrainingBestSolutionsResultName = TrainingBestSolutionsParameterName;
|
---|
| 44 | private const string TrainingBestSolutionQualitiesResultName = TrainingBestSolutionQualitiesParameterName;
|
---|
| 45 |
|
---|
| 46 | #region parameter properties
|
---|
| 47 | public ILookupParameter<ItemList<T>> TrainingBestSolutionsParameter {
|
---|
| 48 | get { return (ILookupParameter<ItemList<T>>)Parameters[TrainingBestSolutionsParameterName]; }
|
---|
| 49 | }
|
---|
| 50 | public ILookupParameter<ItemList<DoubleArray>> TrainingBestSolutionQualitiesParameter {
|
---|
| 51 | get { return (ILookupParameter<ItemList<DoubleArray>>)Parameters[TrainingBestSolutionQualitiesParameterName]; }
|
---|
| 52 | }
|
---|
| 53 | #endregion
|
---|
| 54 | #region properties
|
---|
| 55 | public ItemList<T> TrainingBestSolutions {
|
---|
| 56 | get { return TrainingBestSolutionsParameter.ActualValue; }
|
---|
| 57 | set { TrainingBestSolutionsParameter.ActualValue = value; }
|
---|
| 58 | }
|
---|
| 59 | public ItemList<DoubleArray> TrainingBestSolutionQualities {
|
---|
| 60 | get { return TrainingBestSolutionQualitiesParameter.ActualValue; }
|
---|
| 61 | set { TrainingBestSolutionQualitiesParameter.ActualValue = value; }
|
---|
| 62 | }
|
---|
| 63 | #endregion
|
---|
| 64 |
|
---|
| 65 | [StorableConstructor]
|
---|
| 66 | protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 67 | protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<T> original, Cloner cloner) : base(original, cloner) { }
|
---|
| 68 | public SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer()
|
---|
| 69 | : base() {
|
---|
| 70 | Parameters.Add(new LookupParameter<ItemList<T>>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analyis solutions."));
|
---|
| 71 | Parameters.Add(new LookupParameter<ItemList<DoubleArray>>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions."));
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public override IOperation Apply() {
|
---|
| 75 | var results = ResultCollection;
|
---|
| 76 | // create empty parameter and result values
|
---|
| 77 | if (TrainingBestSolutions == null) {
|
---|
| 78 | TrainingBestSolutions = new ItemList<T>();
|
---|
| 79 | TrainingBestSolutionQualities = new ItemList<DoubleArray>();
|
---|
| 80 | results.Add(new Result(TrainingBestSolutionQualitiesResultName, TrainingBestSolutionQualities));
|
---|
| 81 | results.Add(new Result(TrainingBestSolutionsResultName, TrainingBestSolutions));
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | IList<double[]> trainingBestQualities = TrainingBestSolutionQualities
|
---|
| 85 | .Select(x => x.ToArray())
|
---|
| 86 | .ToList();
|
---|
| 87 |
|
---|
| 88 | #region find best trees
|
---|
| 89 | IList<int> nonDominatedIndexes = new List<int>();
|
---|
| 90 | ISymbolicExpressionTree[] tree = SymbolicExpressionTrees.ToArray();
|
---|
| 91 | List<double[]> qualities = Qualities.Select(x => x.ToArray()).ToList();
|
---|
| 92 | bool[] maximization = Maximization.ToArray();
|
---|
| 93 | List<double[]> newNonDominatedQualities = new List<double[]>();
|
---|
| 94 | for (int i = 0; i < tree.Length; i++) {
|
---|
| 95 | if (IsNonDominated(qualities[i], trainingBestQualities, maximization) &&
|
---|
| 96 | IsNonDominated(qualities[i], qualities, maximization)) {
|
---|
| 97 | newNonDominatedQualities.Add(qualities[i]);
|
---|
| 98 | nonDominatedIndexes.Add(i);
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | #endregion
|
---|
| 102 | #region update Pareto-optimal solution archive
|
---|
| 103 | if (nonDominatedIndexes.Count > 0) {
|
---|
| 104 | ItemList<DoubleArray> nonDominatedQualities = new ItemList<DoubleArray>();
|
---|
| 105 | ItemList<T> nonDominatedSolutions = new ItemList<T>();
|
---|
| 106 | // add all new non-dominated solutions to the archive
|
---|
| 107 | foreach (var index in nonDominatedIndexes) {
|
---|
| 108 | T solution = CreateSolution(tree[index], qualities[index]);
|
---|
| 109 | nonDominatedSolutions.Add(solution);
|
---|
| 110 | nonDominatedQualities.Add(new DoubleArray(qualities[index]));
|
---|
| 111 | }
|
---|
| 112 | // add old non-dominated solutions only if they are not dominated by one of the new solutions
|
---|
| 113 | for (int i = 0; i < trainingBestQualities.Count; i++) {
|
---|
| 114 | if (IsNonDominated(trainingBestQualities[i], newNonDominatedQualities, maximization)) {
|
---|
| 115 | nonDominatedSolutions.Add(TrainingBestSolutions[i]);
|
---|
| 116 | nonDominatedQualities.Add(TrainingBestSolutionQualities[i]);
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | results[TrainingBestSolutionsResultName].Value = nonDominatedSolutions;
|
---|
| 121 | results[TrainingBestSolutionQualitiesResultName].Value = nonDominatedQualities;
|
---|
| 122 | }
|
---|
| 123 | #endregion
|
---|
| 124 | return base.Apply();
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality);
|
---|
| 128 |
|
---|
| 129 | private bool IsNonDominated(double[] point, IList<double[]> points, bool[] maximization) {
|
---|
| 130 | foreach (var refPoint in points) {
|
---|
| 131 | bool refPointDominatesPoint = true;
|
---|
| 132 | for (int i = 0; i < point.Length; i++) {
|
---|
| 133 | refPointDominatesPoint &= IsBetter(refPoint[i], point[i], maximization[i]);
|
---|
| 134 | }
|
---|
| 135 | if (refPointDominatesPoint) return false;
|
---|
| 136 | }
|
---|
| 137 | return true;
|
---|
| 138 | }
|
---|
| 139 | private bool IsBetter(double lhs, double rhs, bool maximization) {
|
---|
| 140 | if (maximization) return lhs > rhs;
|
---|
| 141 | else return lhs < rhs;
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | }
|
---|