[5607] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using System;
|
---|
| 33 |
|
---|
[5624] | 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[5607] | 35 | /// <summary>
|
---|
| 36 | /// Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
| 37 | /// </summary>
|
---|
| 38 | [StorableClass]
|
---|
| 39 | [Item(Name = "SymbolicRegressionSolution", Description = "Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
[5624] | 40 | public class SymbolicRegressionSolution : RegressionSolution, ISymbolicRegressionSolution {
|
---|
| 41 | #region ISymbolicRegressionSolution Members
|
---|
[5607] | 42 |
|
---|
[5624] | 43 | public new ISymbolicRegressionModel Model {
|
---|
| 44 | get { return (ISymbolicRegressionModel)base.Model; }
|
---|
[5607] | 45 | }
|
---|
[5624] | 46 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
| 47 | get { return (ISymbolicDataAnalysisModel)base.Model; }
|
---|
[5607] | 48 | }
|
---|
| 49 |
|
---|
| 50 | #endregion
|
---|
| 51 |
|
---|
| 52 | [StorableConstructor]
|
---|
| 53 | protected SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
| 54 | protected SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
| 55 | : base(original, cloner) {
|
---|
| 56 | }
|
---|
[5624] | 57 | public SymbolicRegressionSolution(ISymbolicRegressionModel model, IRegressionProblemData problemData)
|
---|
| 58 | : base(model, problemData) {
|
---|
[5607] | 59 | }
|
---|
| 60 |
|
---|
| 61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 62 | return new SymbolicRegressionSolution(this, cloner);
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | }
|
---|