[5500] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
[5501] | 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[5500] | 30 | [Item("Pearson R² evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
|
---|
| 31 | [StorableClass]
|
---|
| 32 | public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 33 | [StorableConstructor]
|
---|
| 34 | protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 35 | protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
|
---|
| 36 | : base(original, cloner) {
|
---|
| 37 | }
|
---|
| 38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 39 | return new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
|
---|
| 40 | }
|
---|
| 41 |
|
---|
[5505] | 42 | public SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
|
---|
| 43 |
|
---|
[5500] | 44 | public override IOperation Apply() {
|
---|
| 45 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 46 | double quality = Calculate(SymbolicExpressionTreeInterpreterParameter.ActualValue, SymbolicExpressionTreeParameter.ActualValue, LowerEstimationLimit.Value, UpperEstimationLimit.Value, ProblemData, rows);
|
---|
| 47 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 48 | return base.Apply();
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 52 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
| 53 | IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
|
---|
| 54 | IEnumerable<double> boundedEstimationValues = BoundEstimatedValues(estimatedValues, lowerEstimationLimit, upperEstimationLimit);
|
---|
| 55 | return OnlinePearsonsRSquaredEvaluator.Calculate(originalValues, boundedEstimationValues);
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 | }
|
---|