Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer.cs @ 5747

Last change on this file since 5747 was 5729, checked in by gkronber, 14 years ago

#1418 moved liner scaling method into symbolic regression model and fixed bug in interactive solution simplifier

File size: 4.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
34  /// <summary>
35  /// An operator that analyzes the validation best symbolic regression solution for multi objective symbolic regression problems.
36  /// </summary>
37  [Item("SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic regression solution for multi objective symbolic regression problems.")]
38  [StorableClass]
39  public sealed class SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveValidationBestSolutionAnalyzer<ISymbolicRegressionSolution, ISymbolicRegressionMultiObjectiveEvaluator, IRegressionProblemData>,
40    ISymbolicDataAnalysisBoundedOperator {
41    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
42    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
43    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
44
45    #region parameter properties
46    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
47      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
48    }
49
50    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
51      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
52    }
53        public IValueParameter<BoolValue> ApplyLinearScalingParameter {
54      get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
55    }
56    #endregion
57
58    #region properties
59    public DoubleValue UpperEstimationLimit {
60      get { return UpperEstimationLimitParameter.ActualValue; }
61    }
62    public DoubleValue LowerEstimationLimit {
63      get { return LowerEstimationLimitParameter.ActualValue; }
64    }
65    public BoolValue ApplyLinearScaling {
66      get { return ApplyLinearScalingParameter.Value; }
67    }
68    #endregion
69    [StorableConstructor]
70    private SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
71    private SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer(SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
72    public SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer()
73      : base() {
74      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic regression model."));
75      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic regression model."));
76      Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true)));
77    }
78    public override IDeepCloneable Clone(Cloner cloner) {
79      return new SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer(this, cloner);
80    }
81
82    protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
83      var model = new SymbolicRegressionModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value);
84      var solution = new SymbolicRegressionSolution(model, ProblemData);
85      if (ApplyLinearScaling.Value)
86        solution.ScaleModel();
87      return solution;
88    }
89  }
90}
Note: See TracBrowser for help on using the repository browser.