Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer.cs @ 5733

Last change on this file since 5733 was 5729, checked in by gkronber, 14 years ago

#1418 moved liner scaling method into symbolic regression model and fixed bug in interactive solution simplifier

File size: 6.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
34  /// <summary>
35  /// An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.
36  /// </summary>
37  [Item("SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.")]
38  [StorableClass]
39  public sealed class SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicRegressionSolution>,
40    ISymbolicDataAnalysisInterpreterOperator {
41    private const string ProblemDataParameterName = "ProblemData";
42    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
43    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
44    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
45    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
46    #region parameter properties
47    public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
48      get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
49    }
50    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
51      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
52    }
53    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
54      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
55    }
56
57    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
58      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
59    }
60    public IValueParameter<BoolValue> ApplyLinearScalingParameter {
61      get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
62    }
63    #endregion
64
65    #region properties
66    public IRegressionProblemData ProblemData {
67      get { return ProblemDataParameter.ActualValue; }
68    }
69    public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicDataAnalysisTreeInterpreter {
70      get { return SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; }
71    }
72    public DoubleValue UpperEstimationLimit {
73      get { return UpperEstimationLimitParameter.ActualValue; }
74    }
75    public DoubleValue LowerEstimationLimit {
76      get { return LowerEstimationLimitParameter.ActualValue; }
77    }
78    public BoolValue ApplyLinearScaling {
79      get { return ApplyLinearScalingParameter.Value; }
80    }
81    #endregion
82
83    [StorableConstructor]
84    private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
85    private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
86    public SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer()
87      : base() {
88      Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName, "The problem data for the symbolic regression solution."));
89      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
90      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic regression model."));
91      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic regression model."));
92      Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true)));
93    }
94
95    public override IDeepCloneable Clone(Cloner cloner) {
96      return new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
97    }
98
99    protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
100      var model = new SymbolicRegressionModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value);
101      var solution = new SymbolicRegressionSolution(model, ProblemData);
102      if (ApplyLinearScaling.Value)
103        solution.ScaleModel();
104      return solution;
105    }
106  }
107}
Note: See TracBrowser for help on using the repository browser.