Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs @ 5720

Last change on this file since 5720 was 5720, checked in by gkronber, 14 years ago

#1418 Added upper and lower estimation bounds for symbolic classification and regression.

File size: 4.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Optimization;
32using System;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
35  /// <summary>
36  /// Represents a symbolic classification model
37  /// </summary>
38  [StorableClass]
39  [Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
40  public class SymbolicDiscriminantFunctionClassificationModel : SymbolicDataAnalysisModel, ISymbolicDiscriminantFunctionClassificationModel {
41
42    [Storable]
43    private double[] thresholds;
44    public IEnumerable<double> Thresholds {
45      get { return (IEnumerable<double>)thresholds.Clone(); }
46      set {
47        thresholds = value.ToArray();
48        OnThresholdsChanged(EventArgs.Empty);
49      }
50    }
51    [Storable]
52    private double[] classValues;
53    public IEnumerable<double> ClassValues {
54      get { return (IEnumerable<double>)classValues.Clone(); }
55      set { classValues = value.ToArray(); }
56    }
57    [Storable]
58    private double lowerEstimationLimit;
59    public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
60    [Storable]
61    private double upperEstimationLimit;
62    public double UpperEstimationLimit { get { return upperEstimationLimit; } }
63
64    [StorableConstructor]
65    protected SymbolicDiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
66    protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
67      : base(original, cloner) {
68      classValues = (double[])original.classValues.Clone();
69      thresholds = (double[])original.thresholds.Clone();
70      lowerEstimationLimit = original.lowerEstimationLimit;
71      upperEstimationLimit = original.upperEstimationLimit;
72    }
73    public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
74      IEnumerable<double> classValues, IEnumerable<double> thresholds,
75      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
76      : base(tree, interpreter) {
77      this.classValues = classValues.ToArray();
78      this.thresholds = thresholds.ToArray();
79      this.lowerEstimationLimit = lowerEstimationLimit;
80      this.upperEstimationLimit = upperEstimationLimit;
81    }
82
83    public override IDeepCloneable Clone(Cloner cloner) {
84      return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
85    }
86
87    public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
88      return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows);
89    }
90
91    public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
92      foreach (var x in GetEstimatedValues(dataset, rows)) {
93        int classIndex = 0;
94        // find first threshold value which is larger than x => class index = threshold index + 1
95        for (int i = 0; i < thresholds.Length; i++) {
96          if (x > thresholds[i]) classIndex++;
97          else break;
98        }
99        yield return classValues.ElementAt(classIndex - 1);
100      }
101    }
102
103    #region events
104    public event EventHandler ThresholdsChanged;
105    protected virtual void OnThresholdsChanged(EventArgs e) {
106      var listener = ThresholdsChanged;
107      if (listener != null) listener(this, e);
108    }
109    #endregion
110  }
111}
Note: See TracBrowser for help on using the repository browser.