Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer.cs @ 5759

Last change on this file since 5759 was 5747, checked in by gkronber, 14 years ago

#1418 renamed bounded evaluator, added base classes for single objective and multi objective validation analzers, added overfitting analyzers for symbolic regression and classification.

File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
34  /// <summary>
35  /// An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.
36  /// </summary>
37  [Item("SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic classification solution for multi objective symbolic classification problems.")]
38  [StorableClass]
39  public sealed class SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>,
40    ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator {
41    private const string ProblemDataParameterName = "ProblemData";
42    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
43    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
44    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
45    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
46    #region parameter properties
47    public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
48      get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
49    }
50    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
51      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
52    }
53    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
54      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
55    }
56
57    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
58      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
59    }
60    public IValueParameter<BoolValue> ApplyLinearScalingParameter {
61      get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
62    }
63    #endregion
64    #region properties
65    public IClassificationProblemData ProblemData {
66      get { return ProblemDataParameter.ActualValue; }
67    }
68    public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicDataAnalysisTreeInterpreter {
69      get { return SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; }
70    }
71    public DoubleValue UpperEstimationLimit {
72      get { return UpperEstimationLimitParameter.ActualValue; }
73    }
74    public DoubleValue LowerEstimationLimit {
75      get { return LowerEstimationLimitParameter.ActualValue; }
76    }
77    public BoolValue ApplyLinearScaling {
78      get { return ApplyLinearScalingParameter.Value; }
79    }
80    #endregion
81
82    [StorableConstructor]
83    private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
84    private SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
85    public SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer()
86      : base() {
87      Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution."));
88      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
89      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic classification model."));
90      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic classification model."));
91      Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));
92    }
93    public override IDeepCloneable Clone(Cloner cloner) {
94      return new SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
95    }
96
97    protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
98      var model = new SymbolicDiscriminantFunctionClassificationModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value);
99      var solution = new SymbolicDiscriminantFunctionClassificationSolution(model, ProblemData);
100      if (ApplyLinearScaling.Value) {
101        solution.ScaleModel();
102      }
103      return solution;
104    }
105  }
106}
Note: See TracBrowser for help on using the repository browser.