Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Crossovers/SubtreeCrossover.cs @ 5519

Last change on this file since 5519 was 5510, checked in by gkronber, 14 years ago

#1418 Fixed compiler errors in symbolic expression tree encoding

File size: 11.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
32  /// <summary>
33  /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
34  /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
35  /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
36  /// until a valid configuration is found.
37  /// </summary> 
38  [Item("SubtreeCrossover", "An operator which performs subtree swapping crossover.")]
39  [StorableClass]
40  public sealed class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator {
41    private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
42    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
43    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
44    #region Parameter Properties
45    public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
46      get { return (IValueLookupParameter<PercentValue>)Parameters[InternalCrossoverPointProbabilityParameterName]; }
47    }
48    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
49      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
50    }
51    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
52      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
53    }
54    #endregion
55    #region Properties
56    public PercentValue InternalCrossoverPointProbability {
57      get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
58    }
59    public IntValue MaximumSymbolicExpressionTreeLength {
60      get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
61    }
62    public IntValue MaximumSymbolicExpressionTreeDepth {
63      get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
64    }
65    #endregion
66    [StorableConstructor]
67    private SubtreeCrossover(bool deserializing) : base(deserializing) { }
68    private SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { }
69    public SubtreeCrossover()
70      : base() {
71      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
72      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
73      Parameters.Add(new ValueLookupParameter<PercentValue>(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
74    }
75
76    public override IDeepCloneable Clone(Cloner cloner) {
77      return new SubtreeCrossover(this, cloner);
78    }
79
80    protected override ISymbolicExpressionTree Cross(IRandom random,
81      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
82      return Cross(random, parent0, parent1, InternalCrossoverPointProbability.Value,
83        MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
84    }
85
86    public static ISymbolicExpressionTree Cross(IRandom random,
87      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
88      double internalCrossoverPointProbability, int maxTreeSize, int maxTreeHeight) {
89      // select a random crossover point in the first parent
90      ISymbolicExpressionTreeNode crossoverPoint0;
91      int replacedSubtreeIndex;
92      SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeSize, maxTreeHeight, out crossoverPoint0, out replacedSubtreeIndex);
93
94      // calculate the max size and height that the inserted branch can have
95      int maxInsertedBranchSize = maxTreeSize - (parent0.Size - crossoverPoint0.GetSubTree(replacedSubtreeIndex).GetSize());
96      int maxInsertedBranchHeight = maxTreeHeight - GetBranchLevel(parent0.Root, crossoverPoint0);
97
98      List<ISymbolicExpressionTreeNode> allowedBranches = new List<ISymbolicExpressionTreeNode>();
99      parent1.Root.ForEachNodePostfix((n) => {
100        if (n.GetSize() <= maxInsertedBranchSize &&
101          n.GetHeight() <= maxInsertedBranchHeight &&
102          IsMatchingPointType(crossoverPoint0, replacedSubtreeIndex, n))
103          allowedBranches.Add(n);
104      });
105
106      if (allowedBranches.Count == 0) {
107        return parent0;
108      } else {
109        var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
110
111        // manipulate the tree of parent0 in place
112        // replace the branch in tree0 with the selected branch from tree1
113        crossoverPoint0.RemoveSubTree(replacedSubtreeIndex);
114        crossoverPoint0.InsertSubTree(replacedSubtreeIndex, selectedBranch);
115        return parent0;
116      }
117    }
118
119    private static bool IsMatchingPointType(ISymbolicExpressionTreeNode parent, int replacedSubtreeIndex, ISymbolicExpressionTreeNode branch) {
120      // check syntax constraints of direct parent - child relation
121      if (!parent.Grammar.ContainsSymbol(branch.Symbol) ||
122          !parent.Grammar.IsAllowedChild(parent.Symbol, branch.Symbol, replacedSubtreeIndex)) return false;
123
124      bool result = true;
125      // check point type for the whole branch
126      branch.ForEachNodePostfix((n) => {
127        result =
128          result &&
129          parent.Grammar.ContainsSymbol(n.Symbol) &&
130          n.SubTrees.Count() >= parent.Grammar.GetMinSubtreeCount(n.Symbol) &&
131          n.SubTrees.Count() <= parent.Grammar.GetMaxSubtreeCount(n.Symbol);
132      });
133      return result;
134    }
135
136    private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchSize, int maxBranchHeight, out ISymbolicExpressionTreeNode crossoverPoint, out int subtreeIndex) {
137      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
138      List<CrossoverPoint> internalCrossoverPoints = new List<CrossoverPoint>();
139      List<CrossoverPoint> leafCrossoverPoints = new List<CrossoverPoint>();
140      parent0.Root.ForEachNodePostfix((n) => {
141        if (n.SubTrees.Count() > 0 && n != parent0.Root) {
142          foreach (var child in n.SubTrees) {
143            if (child.GetSize() <= maxBranchSize &&
144                child.GetHeight() <= maxBranchHeight) {
145              if (child.SubTrees.Count() > 0)
146                internalCrossoverPoints.Add(new CrossoverPoint(n, child));
147              else
148                leafCrossoverPoints.Add(new CrossoverPoint(n, child));
149            }
150          }
151        }
152      });
153
154      if (random.NextDouble() < internalNodeProbability) {
155        // select from internal node if possible
156        if (internalCrossoverPoints.Count > 0) {
157          // select internal crossover point or leaf
158          var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
159          crossoverPoint = selectedCrossoverPoint.Parent;
160          subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
161        } else {
162          // otherwise select external node
163          var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
164          crossoverPoint = selectedCrossoverPoint.Parent;
165          subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
166        }
167      } else if (leafCrossoverPoints.Count > 0) {
168        // select from leaf crossover point if possible
169        var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
170        crossoverPoint = selectedCrossoverPoint.Parent;
171        subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
172      } else {
173        // otherwise select internal crossover point
174        var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
175        crossoverPoint = selectedCrossoverPoint.Parent;
176        subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
177      }
178    }
179
180    private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<ISymbolicExpressionTreeNode> branches, double internalNodeProbability) {
181      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
182      List<ISymbolicExpressionTreeNode> allowedInternalBranches;
183      List<ISymbolicExpressionTreeNode> allowedLeafBranches;
184      if (random.NextDouble() < internalNodeProbability) {
185        // select internal node if possible
186        allowedInternalBranches = (from branch in branches
187                                   where branch.SubTrees.Count() > 0
188                                   select branch).ToList();
189        if (allowedInternalBranches.Count > 0) {
190          return allowedInternalBranches.SelectRandom(random);
191        } else {
192          // no internal nodes allowed => select leaf nodes
193          allowedLeafBranches = (from branch in branches
194                                 where branch.SubTrees.Count() == 0
195                                 select branch).ToList();
196          return allowedLeafBranches.SelectRandom(random);
197        }
198      } else {
199        // select leaf node if possible
200        allowedLeafBranches = (from branch in branches
201                               where branch.SubTrees.Count() == 0
202                               select branch).ToList();
203        if (allowedLeafBranches.Count > 0) {
204          return allowedLeafBranches.SelectRandom(random);
205        } else {
206          allowedInternalBranches = (from branch in branches
207                                     where branch.SubTrees.Count() > 0
208                                     select branch).ToList();
209          return allowedInternalBranches.SelectRandom(random);
210        }
211      }
212    }
213
214    private static int GetBranchLevel(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode point) {
215      if (root == point) return 0;
216      foreach (var subtree in root.SubTrees) {
217        int branchLevel = GetBranchLevel(subtree, point);
218        if (branchLevel < int.MaxValue) return 1 + branchLevel;
219      }
220      return int.MaxValue;
221    }
222  }
223}
Note: See TracBrowser for help on using the repository browser.