Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Algorithms.DataAnalysis/3.3/LinearRegression.cs @ 5658

Last change on this file since 5658 was 5625, checked in by mkommend, 14 years ago

#1418: Reorganized branch and removed CreateAble-Attribute from outdated classes.

File size: 8.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis;
30using HeuristicLab.Problems.DataAnalysis.Evaluators;
31using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression;
32using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
34using HeuristicLab.Problems.DataAnalysis.Symbolic;
35
36namespace HeuristicLab.Algorithms.DataAnalysis {
37  /// <summary>
38  /// Linear regression data analysis algorithm.
39  /// </summary>
40  [Item("Linear Regression", "Linear regression data analysis algorithm.")]
41  [StorableClass]
42  public sealed class LinearRegression : EngineAlgorithm, IStorableContent {
43    private const string TrainingSamplesStartParameterName = "Training start";
44    private const string TrainingSamplesEndParameterName = "Training end";
45    private const string LinearRegressionModelParameterName = "LinearRegressionModel";
46    private const string ModelInterpreterParameterName = "Model interpreter";
47
48    public string Filename { get; set; }
49
50    #region Problem Properties
51    public override Type ProblemType {
52      get { return typeof(DataAnalysisProblem); }
53    }
54    public new DataAnalysisProblem Problem {
55      get { return (DataAnalysisProblem)base.Problem; }
56      set { base.Problem = value; }
57    }
58    #endregion
59
60    #region parameter properties
61    public IValueParameter<IntValue> TrainingSamplesStartParameter {
62      get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesStartParameterName]; }
63    }
64    public IValueParameter<IntValue> TrainingSamplesEndParameter {
65      get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesEndParameterName]; }
66    }
67    public IValueParameter<ISymbolicExpressionTreeInterpreter> ModelInterpreterParameter {
68      get { return (IValueParameter<ISymbolicExpressionTreeInterpreter>)Parameters[ModelInterpreterParameterName]; }
69    }
70    #endregion
71
72    [Storable]
73    private LinearRegressionSolutionCreator solutionCreator;
74    [Storable]
75    private SimpleSymbolicRegressionEvaluator evaluator;
76    [Storable]
77    private SimpleMSEEvaluator mseEvaluator;
78    [Storable]
79    private BestSymbolicRegressionSolutionAnalyzer analyzer;
80    public LinearRegression()
81      : base() {
82      Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesStartParameterName, "The first index of the data set partition to use for training."));
83      Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesEndParameterName, "The last index of the data set partition to use for training."));
84      Parameters.Add(new ValueParameter<ISymbolicExpressionTreeInterpreter>(ModelInterpreterParameterName, "The interpreter to use for evaluation of the model.", new SimpleArithmeticExpressionInterpreter()));
85
86      solutionCreator = new LinearRegressionSolutionCreator();
87      evaluator = new SimpleSymbolicRegressionEvaluator();
88      mseEvaluator = new SimpleMSEEvaluator();
89      analyzer = new BestSymbolicRegressionSolutionAnalyzer();
90
91      OperatorGraph.InitialOperator = solutionCreator;
92      solutionCreator.Successor = evaluator;
93      evaluator.Successor = mseEvaluator;
94      mseEvaluator.Successor = analyzer;
95
96      Initialize();
97    }
98    [StorableConstructor]
99    private LinearRegression(bool deserializing) : base(deserializing) { }
100    [StorableHook(HookType.AfterDeserialization)]
101    private void AfterDeserialization() {
102      Initialize();
103    }
104
105    private LinearRegression(LinearRegression original, Cloner cloner)
106      : base(original, cloner) {
107      solutionCreator = cloner.Clone(original.solutionCreator);
108      evaluator = cloner.Clone(original.evaluator);
109      mseEvaluator = cloner.Clone(original.mseEvaluator);
110      analyzer = cloner.Clone(original.analyzer);
111      Initialize();
112    }
113    public override IDeepCloneable Clone(Cloner cloner) {
114      return new LinearRegression(this, cloner);
115    }
116
117    public override void Prepare() {
118      if (Problem != null) base.Prepare();
119    }
120
121    protected override void Problem_Reset(object sender, EventArgs e) {
122      UpdateAlgorithmParameterValues();
123      base.Problem_Reset(sender, e);
124    }
125
126    #region Events
127    protected override void OnProblemChanged() {
128      solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
129      evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
130      analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
131      UpdateAlgorithmParameterValues();
132      Problem.Reset += new EventHandler(Problem_Reset);
133      base.OnProblemChanged();
134    }
135
136
137    #endregion
138
139    #region Helpers
140    private void Initialize() {
141      solutionCreator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
142      solutionCreator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
143      solutionCreator.SymbolicExpressionTreeParameter.ActualName = LinearRegressionModelParameterName;
144
145      evaluator.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName;
146      evaluator.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name;
147      evaluator.ValuesParameter.ActualName = "Training values";
148      evaluator.SamplesStartParameter.ActualName = TrainingSamplesStartParameterName;
149      evaluator.SamplesEndParameter.ActualName = TrainingSamplesEndParameterName;
150
151      mseEvaluator.ValuesParameter.ActualName = "Training values";
152      mseEvaluator.MeanSquaredErrorParameter.ActualName = "Training MSE";
153
154      analyzer.SymbolicExpressionTreeParameter.ActualName = solutionCreator.SymbolicExpressionTreeParameter.ActualName;
155      analyzer.SymbolicExpressionTreeParameter.Depth = 0;
156      analyzer.QualityParameter.ActualName = mseEvaluator.MeanSquaredErrorParameter.ActualName;
157      analyzer.QualityParameter.Depth = 0;
158      analyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = ModelInterpreterParameter.Name;
159
160      if (Problem != null) {
161        solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
162        evaluator.RegressionProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
163        analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
164        Problem.Reset += new EventHandler(Problem_Reset);
165      }
166    }
167
168    private void UpdateAlgorithmParameterValues() {
169      TrainingSamplesStartParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesStart;
170      TrainingSamplesEndParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesEnd;
171      //var targetValues =
172      //  Problem.DataAnalysisProblemData.Dataset.GetVariableValues(Problem.DataAnalysisProblemData.TargetVariable.Value,
173      //  TrainingSamplesStartParameter.Value.Value, TrainingSamplesEndParameter.Value.Value);
174      //double range = targetValues.Max() - targetValues.Min();
175      //double lowerEstimationLimit = targetValues.Average() - 10.0 * range;
176      //double upperEstimationLimit = targetValues.Average() + 10.0 * range;
177      //evaluator.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit);
178      //evaluator.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit);
179      //analyzer.LowerEstimationLimitParameter.Value = new DoubleValue(lowerEstimationLimit);
180      //analyzer.UpperEstimationLimitParameter.Value = new DoubleValue(upperEstimationLimit);
181    }
182    #endregion
183  }
184}
Note: See TracBrowser for help on using the repository browser.