1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Joseph Helm and Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 |
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.BinPacking3D {
|
---|
36 |
|
---|
37 | public enum SortingMethod { All, Given, VolumeHeight, HeightVolume, AreaHeight, HeightArea, ClusteredAreaHeight, ClusteredHeightArea }
|
---|
38 | public enum FittingMethod { All, FirstFit, ResidualSpaceBestFit, FreeVolumeBestFit }
|
---|
39 |
|
---|
40 | [Item("Extreme-point-based Bin Packing (3d)", "An implementation of the extreme-point based packing described in Crainic, T. G., Perboli, G., & Tadei, R. (2008). Extreme point-based heuristics for three-dimensional bin packing. Informs Journal on computing, 20(3), 368-384.")]
|
---|
41 | [StorableClass]
|
---|
42 | [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 180)]
|
---|
43 | public sealed class ExtremePointAlgorithm : BasicAlgorithm {
|
---|
44 |
|
---|
45 | public override Type ProblemType {
|
---|
46 | get { return typeof(PermutationProblem); }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public new PermutationProblem Problem {
|
---|
50 | get { return (PermutationProblem)base.Problem; }
|
---|
51 | set { base.Problem = value; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | public override bool SupportsPause {
|
---|
55 | get { return false; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | [Storable]
|
---|
59 | private readonly IValueParameter<EnumValue<SortingMethod>> sortingMethodParameter;
|
---|
60 | public IValueParameter<EnumValue<SortingMethod>> SortingMethodParameter {
|
---|
61 | get { return sortingMethodParameter; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | [Storable]
|
---|
65 | private readonly IValueParameter<EnumValue<FittingMethod>> fittingMethodParameter;
|
---|
66 | public IValueParameter<EnumValue<FittingMethod>> FittingMethodParameter {
|
---|
67 | get { return fittingMethodParameter; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | [Storable]
|
---|
71 | private readonly IValueParameter<PercentValue> deltaParameter;
|
---|
72 | public IValueParameter<PercentValue> DeltaParameter {
|
---|
73 | get { return deltaParameter; }
|
---|
74 | }
|
---|
75 |
|
---|
76 | [StorableConstructor]
|
---|
77 | private ExtremePointAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
78 | private ExtremePointAlgorithm(ExtremePointAlgorithm original, Cloner cloner)
|
---|
79 | : base(original, cloner) {
|
---|
80 | sortingMethodParameter = cloner.Clone(original.sortingMethodParameter);
|
---|
81 | fittingMethodParameter = cloner.Clone(original.fittingMethodParameter);
|
---|
82 | deltaParameter = cloner.Clone(original.deltaParameter);
|
---|
83 | }
|
---|
84 | public ExtremePointAlgorithm() {
|
---|
85 | Parameters.Add(sortingMethodParameter = new ValueParameter<EnumValue<SortingMethod>>("SortingMethod", "In which order the items should be packed.", new EnumValue<SortingMethod>(SortingMethod.All)));
|
---|
86 | Parameters.Add(fittingMethodParameter = new ValueParameter<EnumValue<FittingMethod>>("FittingMethod", "Which method to fit should be used.", new EnumValue<FittingMethod>(FittingMethod.All)));
|
---|
87 | Parameters.Add(deltaParameter = new ValueParameter<PercentValue>("Delta", "[1;100]% Clustered sorting methods use a delta parameter to determine the clusters.", new PercentValue(.1)));
|
---|
88 |
|
---|
89 | Problem = new PermutationProblem();
|
---|
90 | }
|
---|
91 |
|
---|
92 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
93 | return new ExtremePointAlgorithm(this, cloner);
|
---|
94 | }
|
---|
95 |
|
---|
96 | [StorableHook(HookType.AfterDeserialization)]
|
---|
97 | private void AfterDeserialization() {
|
---|
98 | }
|
---|
99 |
|
---|
100 | protected override void Run(CancellationToken token) {
|
---|
101 | var items = Problem.Items;
|
---|
102 | var bin = Problem.BinShape;
|
---|
103 | var sorting = new[] { SortingMethodParameter.Value.Value };
|
---|
104 | if (sorting[0] == SortingMethod.All) {
|
---|
105 | sorting = Enum.GetValues(typeof(SortingMethod)).Cast<SortingMethod>().Where(x => x != SortingMethod.All).ToArray();
|
---|
106 | }
|
---|
107 | var fitting = new[] { fittingMethodParameter.Value.Value };
|
---|
108 | if (fitting[0] == FittingMethod.All) {
|
---|
109 | fitting = Enum.GetValues(typeof(FittingMethod)).Cast<FittingMethod>().Where(x => x != FittingMethod.All).ToArray();
|
---|
110 | }
|
---|
111 | var result = GetBest(bin, items, sorting, fitting, token);
|
---|
112 | if (result == null) throw new InvalidOperationException("No result obtained!");
|
---|
113 |
|
---|
114 | Results.Add(new Result("Best Solution",
|
---|
115 | "The best found solution",
|
---|
116 | result.Item1));
|
---|
117 | Results.Add(new Result("Best Solution Quality",
|
---|
118 | "The quality of the best found solution according to the evaluator",
|
---|
119 | new DoubleValue(result.Item2)));
|
---|
120 |
|
---|
121 | var binUtil = new BinUtilizationEvaluator();
|
---|
122 | var packRatio = new PackingRatioEvaluator();
|
---|
123 | Results.Add(new Result("Best Solution Bin Count",
|
---|
124 | "The number of bins in the best found solution",
|
---|
125 | new IntValue(result.Item1.NrOfBins)));
|
---|
126 | Results.Add(new Result("Best Solution Bin Utilization",
|
---|
127 | "The utilization given in percentage as calculated by the BinUtilizationEvaluator (total used space / total available space)",
|
---|
128 | new PercentValue(Math.Round(binUtil.Evaluate(result.Item1), 3))));
|
---|
129 |
|
---|
130 | if (result.Item3.HasValue && sorting.Length > 1)
|
---|
131 | Results.Add(new Result("Best Sorting Method",
|
---|
132 | "The sorting method that found the best solution",
|
---|
133 | new EnumValue<SortingMethod>(result.Item3.Value)));
|
---|
134 | if (result.Item4.HasValue && fitting.Length > 1)
|
---|
135 | Results.Add(new Result("Best Fitting Method",
|
---|
136 | "The fitting method that found the best solution",
|
---|
137 | new EnumValue<FittingMethod>(result.Item4.Value)));
|
---|
138 | }
|
---|
139 |
|
---|
140 | private Tuple<Solution, double, SortingMethod?, FittingMethod?> GetBest(PackingShape bin, IList<PackingItem> items, SortingMethod[] sortings, FittingMethod[] fittings, CancellationToken token) {
|
---|
141 | SortingMethod? bestSorting = null;
|
---|
142 | FittingMethod? bestFitting = null;
|
---|
143 | var best = double.NaN;
|
---|
144 | Solution bestSolution = null;
|
---|
145 | foreach (var fit in fittings) {
|
---|
146 | foreach (var sort in sortings) {
|
---|
147 | var result = Optimize(bin, items, sort, fit, DeltaParameter.Value.Value, Problem.UseStackingConstraints, Problem.SolutionEvaluator, token);
|
---|
148 | if (double.IsNaN(result.Item2) || double.IsInfinity(result.Item2)) continue;
|
---|
149 | if (double.IsNaN(best)
|
---|
150 | || Problem.Maximization && result.Item2 > best
|
---|
151 | || !Problem.Maximization && result.Item2 < best) {
|
---|
152 | bestSolution = result.Item1;
|
---|
153 | best = result.Item2;
|
---|
154 | bestSorting = sort;
|
---|
155 | bestFitting = fit;
|
---|
156 | }
|
---|
157 | if (token.IsCancellationRequested) return Tuple.Create(bestSolution, best, bestSorting, bestFitting);
|
---|
158 | }
|
---|
159 | }
|
---|
160 | if (double.IsNaN(best)) return null;
|
---|
161 | return Tuple.Create(bestSolution, best, bestSorting, bestFitting);
|
---|
162 | }
|
---|
163 |
|
---|
164 | private static Tuple<Solution, double> Optimize(PackingShape bin, IList<PackingItem> items, SortingMethod sorting, FittingMethod fitting, double delta, bool stackingConstraints, IEvaluator evaluator, CancellationToken token) {
|
---|
165 | Permutation sorted = null;
|
---|
166 | switch (sorting) {
|
---|
167 | case SortingMethod.Given:
|
---|
168 | sorted = new Permutation(PermutationTypes.Absolute, Enumerable.Range(0, items.Count).ToArray());
|
---|
169 | break;
|
---|
170 | case SortingMethod.VolumeHeight:
|
---|
171 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
172 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
173 | .OrderByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height)
|
---|
174 | .ThenByDescending(x => x.Item.Height)
|
---|
175 | .Select(x => x.Index).ToArray());
|
---|
176 | break;
|
---|
177 | case SortingMethod.HeightVolume:
|
---|
178 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
179 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
180 | .OrderByDescending(x => x.Item.Height)
|
---|
181 | .ThenByDescending(x => x.Item.Depth * x.Item.Width * x.Item.Height)
|
---|
182 | .Select(x => x.Index).ToArray());
|
---|
183 | break;
|
---|
184 | case SortingMethod.AreaHeight:
|
---|
185 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
186 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
187 | .OrderByDescending(x => x.Item.Depth * x.Item.Width)
|
---|
188 | .ThenByDescending(x => x.Item.Height)
|
---|
189 | .Select(x => x.Index).ToArray());
|
---|
190 | break;
|
---|
191 | case SortingMethod.HeightArea:
|
---|
192 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
193 | items.Select((v, i) => new { Index = i, Item = v })
|
---|
194 | .OrderByDescending(x => x.Item.Height)
|
---|
195 | .ThenByDescending(x => x.Item.Depth * x.Item.Width)
|
---|
196 | .Select(x => x.Index).ToArray());
|
---|
197 | break;
|
---|
198 | case SortingMethod.ClusteredAreaHeight:
|
---|
199 | double clusterRange = bin.Width * bin.Depth * delta;
|
---|
200 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
201 | items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Width * v.Depth / clusterRange)) })
|
---|
202 | .GroupBy(x => x.ClusterId)
|
---|
203 | .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Height).ToList() })
|
---|
204 | .OrderByDescending(x => x.Cluster)
|
---|
205 | .SelectMany(x => x.Items)
|
---|
206 | .Select(x => x.Index).ToArray());
|
---|
207 | break;
|
---|
208 | case SortingMethod.ClusteredHeightArea:
|
---|
209 | double clusterRange2 = bin.Height * delta;
|
---|
210 | sorted = new Permutation(PermutationTypes.Absolute,
|
---|
211 | items.Select((v, i) => new { Index = i, Item = v, ClusterId = (int)(Math.Ceiling(v.Height / clusterRange2)) })
|
---|
212 | .GroupBy(x => x.ClusterId)
|
---|
213 | .Select(x => new { Cluster = x.Key, Items = x.OrderByDescending(y => y.Item.Depth * y.Item.Width).ToList() })
|
---|
214 | .OrderByDescending(x => x.Cluster)
|
---|
215 | .SelectMany(x => x.Items)
|
---|
216 | .Select(x => x.Index).ToArray());
|
---|
217 | break;
|
---|
218 | default: throw new ArgumentException("Unknown sorting method: " + sorting);
|
---|
219 | }
|
---|
220 |
|
---|
221 | ExtremePointPermutationDecoderBase decoder = null;
|
---|
222 | switch (fitting) {
|
---|
223 | case FittingMethod.FirstFit:
|
---|
224 | decoder = new ExtremePointPermutationDecoder();
|
---|
225 | break;
|
---|
226 | case FittingMethod.FreeVolumeBestFit:
|
---|
227 | decoder = new FreeVolumeBestFitExtremePointPermutationDecoder();
|
---|
228 | break;
|
---|
229 | case FittingMethod.ResidualSpaceBestFit:
|
---|
230 | decoder = new ResidualSpaceBestFitExtremePointPermutationDecoder();
|
---|
231 | break;
|
---|
232 | default: throw new ArgumentException("Unknown fitting method: " + fitting);
|
---|
233 | }
|
---|
234 |
|
---|
235 | var sol = decoder.Decode(sorted, bin, items, stackingConstraints);
|
---|
236 | var fit = evaluator.Evaluate(sol);
|
---|
237 |
|
---|
238 | return Tuple.Create(sol, fit);
|
---|
239 | }
|
---|
240 | }
|
---|
241 | }
|
---|