1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
33 | [Item("Constant Optimization Evaluator", "Calculates Pearson R² of a symbolic regression solution and optimizes the constant used.")]
|
---|
34 | [StorableClass]
|
---|
35 | public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
36 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
37 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
38 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
39 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
40 |
|
---|
41 | private const string EvaluatedTreesResultName = "EvaluatedTrees";
|
---|
42 | private const string EvaluatedTreeNodesResultName = "EvaluatedTreeNodes";
|
---|
43 |
|
---|
44 | public ILookupParameter<IntValue> EvaluatedTreesParameter {
|
---|
45 | get { return (ILookupParameter<IntValue>)Parameters[EvaluatedTreesResultName]; }
|
---|
46 | }
|
---|
47 | public ILookupParameter<IntValue> EvaluatedTreeNodesParameter {
|
---|
48 | get { return (ILookupParameter<IntValue>)Parameters[EvaluatedTreeNodesResultName]; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
52 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
53 | }
|
---|
54 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
55 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
56 | }
|
---|
57 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
58 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
59 | }
|
---|
60 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
61 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | public IntValue ConstantOptimizationIterations {
|
---|
65 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
66 | }
|
---|
67 | public DoubleValue ConstantOptimizationImprovement {
|
---|
68 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
69 | }
|
---|
70 | public PercentValue ConstantOptimizationProbability {
|
---|
71 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
72 | }
|
---|
73 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
74 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
75 | }
|
---|
76 |
|
---|
77 | public override bool Maximization {
|
---|
78 | get { return true; }
|
---|
79 | }
|
---|
80 |
|
---|
81 | [StorableConstructor]
|
---|
82 | protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { }
|
---|
83 | protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner)
|
---|
84 | : base(original, cloner) {
|
---|
85 | }
|
---|
86 | public SymbolicRegressionConstantOptimizationEvaluator()
|
---|
87 | : base() {
|
---|
88 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(3), true));
|
---|
89 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true));
|
---|
90 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
|
---|
91 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
|
---|
92 |
|
---|
93 | Parameters.Add(new LookupParameter<IntValue>(EvaluatedTreesResultName));
|
---|
94 | Parameters.Add(new LookupParameter<IntValue>(EvaluatedTreeNodesResultName));
|
---|
95 | }
|
---|
96 |
|
---|
97 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
98 | return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner);
|
---|
99 | }
|
---|
100 |
|
---|
101 | public override IOperation Apply() {
|
---|
102 | AddResults();
|
---|
103 | int seed = RandomParameter.ActualValue.Next();
|
---|
104 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
105 | double quality;
|
---|
106 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
107 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
108 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
109 | constantOptimizationRows, ConstantOptimizationImprovement.Value, ConstantOptimizationIterations.Value, 0.001,
|
---|
110 | EstimationLimitsParameter.ActualValue.Upper, EstimationLimitsParameter.ActualValue.Lower,
|
---|
111 | EvaluatedTreesParameter.ActualValue, EvaluatedTreeNodesParameter.ActualValue);
|
---|
112 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
113 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
114 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows);
|
---|
115 | }
|
---|
116 | } else {
|
---|
117 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
118 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows);
|
---|
119 | }
|
---|
120 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
121 | EvaluatedTreesParameter.ActualValue.Value += 1;
|
---|
122 | EvaluatedTreeNodesParameter.ActualValue.Value += solution.Length;
|
---|
123 |
|
---|
124 | if (Successor != null)
|
---|
125 | return ExecutionContext.CreateOperation(Successor);
|
---|
126 | else
|
---|
127 | return null;
|
---|
128 | }
|
---|
129 |
|
---|
130 | private void AddResults() {
|
---|
131 | if (EvaluatedTreesParameter.ActualValue == null) {
|
---|
132 | var scope = ExecutionContext.Scope;
|
---|
133 | while (scope.Parent != null)
|
---|
134 | scope = scope.Parent;
|
---|
135 | scope.Variables.Add(new Core.Variable(EvaluatedTreesResultName, new IntValue()));
|
---|
136 | }
|
---|
137 | if (EvaluatedTreeNodesParameter.ActualValue == null) {
|
---|
138 | var scope = ExecutionContext.Scope;
|
---|
139 | while (scope.Parent != null)
|
---|
140 | scope = scope.Parent;
|
---|
141 | scope.Variables.Add(new Core.Variable(EvaluatedTreeNodesResultName, new IntValue()));
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
146 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
147 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
148 |
|
---|
149 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
150 |
|
---|
151 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
152 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
153 |
|
---|
154 | return r2;
|
---|
155 | }
|
---|
156 |
|
---|
157 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData,
|
---|
158 | IEnumerable<int> rows, double improvement, int iterations, double differentialStep, double upperEstimationLimit = double.MaxValue, double lowerEstimationLimit = double.MinValue, IntValue evaluatedTrees = null, IntValue evaluatedTreeNodes = null) {
|
---|
159 |
|
---|
160 | List<AutoDiff.Variable> variables = new List<AutoDiff.Variable>();
|
---|
161 | List<AutoDiff.Variable> parameters = new List<AutoDiff.Variable>();
|
---|
162 | List<string> variableNames = new List<string>();
|
---|
163 |
|
---|
164 | var func = TransformToAutoDiff(tree.Root.GetSubtree(0), variables, parameters, variableNames);
|
---|
165 | if (variableNames.Count == 0) return 0.0;
|
---|
166 |
|
---|
167 |
|
---|
168 | AutoDiff.IParametricCompiledTerm compiledFunc = AutoDiff.TermUtils.Compile(func, variables.ToArray(), parameters.ToArray());
|
---|
169 |
|
---|
170 | List<SymbolicExpressionTreeTerminalNode> terminalNodes = tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>().ToList();
|
---|
171 | double[] c = new double[variables.Count];
|
---|
172 |
|
---|
173 | c[0] = 0.0;
|
---|
174 | c[1] = 1.0;
|
---|
175 | //extract inital constants
|
---|
176 | for (int i = 0; i < terminalNodes.Count; i++) {
|
---|
177 | ConstantTreeNode constantTreeNode = terminalNodes[i] as ConstantTreeNode;
|
---|
178 | if (constantTreeNode != null) c[i + 2] = constantTreeNode.Value;
|
---|
179 | VariableTreeNode variableTreeNode = terminalNodes[i] as VariableTreeNode;
|
---|
180 | if (variableTreeNode != null) c[i + 2] = variableTreeNode.Weight;
|
---|
181 | }
|
---|
182 |
|
---|
183 | double epsg = 0;
|
---|
184 | double epsf = improvement;
|
---|
185 | double epsx = 0;
|
---|
186 | int maxits = iterations;
|
---|
187 | double diffstep = differentialStep;
|
---|
188 |
|
---|
189 | alglib.lsfitstate state;
|
---|
190 | alglib.lsfitreport rep;
|
---|
191 | int info;
|
---|
192 |
|
---|
193 | Dataset ds = problemData.Dataset;
|
---|
194 | double[,] x = new double[rows.Count(), variableNames.Count];
|
---|
195 | int row = 0;
|
---|
196 | foreach (var r in rows) {
|
---|
197 | for (int col = 0; col < variableNames.Count; col++) {
|
---|
198 | x[row, col] = ds.GetDoubleValue(variableNames[col], r);
|
---|
199 | }
|
---|
200 | row++;
|
---|
201 | }
|
---|
202 | double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
203 | int n = x.GetLength(0);
|
---|
204 | int m = x.GetLength(1);
|
---|
205 | int k = c.Length;
|
---|
206 |
|
---|
207 | alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc, variables, parameters);
|
---|
208 | alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc, variables, parameters);
|
---|
209 |
|
---|
210 | alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
|
---|
211 | alglib.lsfitsetcond(state, epsf, epsx, maxits);
|
---|
212 | alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
|
---|
213 | alglib.lsfitresults(state, out info, out c, out rep);
|
---|
214 | //alglib.minlmstate state;
|
---|
215 | //alglib.minlmreport report;
|
---|
216 |
|
---|
217 | //alglib.minlmcreatev(1, c, diffstep, out state);
|
---|
218 | //alglib.minlmsetcond(state, epsg, epsf, epsx, maxits);
|
---|
219 | //alglib.minlmoptimize(state, CreateCallBack(interpreter, tree, problemData, rows, upperEstimationLimit, lowerEstimationLimit, treeLength, evaluatedTrees, evaluatedTreeNodes), null, terminalNodes);
|
---|
220 | //alglib.minlmresults(state, out c, out report);
|
---|
221 |
|
---|
222 | for (int i = 2; i < c.Length; i++) {
|
---|
223 | ConstantTreeNode constantTreeNode = terminalNodes[i - 2] as ConstantTreeNode;
|
---|
224 | if (constantTreeNode != null) constantTreeNode.Value = c[i];
|
---|
225 | VariableTreeNode variableTreeNode = terminalNodes[i - 2] as VariableTreeNode;
|
---|
226 | if (variableTreeNode != null) variableTreeNode.Weight = c[i];
|
---|
227 | }
|
---|
228 |
|
---|
229 | return SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows);
|
---|
230 |
|
---|
231 | }
|
---|
232 |
|
---|
233 | private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc, List<AutoDiff.Variable> variables, List<AutoDiff.Variable> parameters) {
|
---|
234 | return (double[] c, double[] x, ref double func, object o) => {
|
---|
235 | func = compiledFunc.Evaluate(c, x);
|
---|
236 | };
|
---|
237 | }
|
---|
238 |
|
---|
239 | private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc, List<AutoDiff.Variable> variables, List<AutoDiff.Variable> parameters) {
|
---|
240 | return (double[] c, double[] x, ref double func, double[] grad, object o) => {
|
---|
241 | var tupel = compiledFunc.Differentiate(c, x);
|
---|
242 | func = tupel.Item2;
|
---|
243 | Array.Copy(tupel.Item1, grad, grad.Length);
|
---|
244 | };
|
---|
245 | }
|
---|
246 |
|
---|
247 | private static AutoDiff.Term TransformToAutoDiff(ISymbolicExpressionTreeNode node, List<AutoDiff.Variable> variables, List<AutoDiff.Variable> parameters, List<string> variableNames) {
|
---|
248 | if (node.Symbol is Constant) {
|
---|
249 | var var = new AutoDiff.Variable();
|
---|
250 | variables.Add(var);
|
---|
251 | return var;
|
---|
252 | }
|
---|
253 | if (node.Symbol is Variable) {
|
---|
254 | var w = new AutoDiff.Variable();
|
---|
255 | variables.Add(w);
|
---|
256 | var par = new AutoDiff.Variable();
|
---|
257 | parameters.Add(par);
|
---|
258 | variableNames.Add((node as VariableTreeNode).VariableName);
|
---|
259 | return AutoDiff.TermBuilder.Product(w, par);
|
---|
260 | }
|
---|
261 | if (node.Symbol is Addition)
|
---|
262 | return AutoDiff.TermBuilder.Sum(
|
---|
263 | from subTree in node.Subtrees
|
---|
264 | select TransformToAutoDiff(subTree, variables, parameters, variableNames)
|
---|
265 | );
|
---|
266 | if (node.Symbol is Multiplication)
|
---|
267 | return AutoDiff.TermBuilder.Product(
|
---|
268 | TransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames),
|
---|
269 | TransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames),
|
---|
270 | (from subTree in node.Subtrees.Skip(2)
|
---|
271 | select TransformToAutoDiff(subTree, variables, parameters, variableNames)).ToArray()
|
---|
272 | );
|
---|
273 | if (node.Symbol is Logarithm)
|
---|
274 | return AutoDiff.TermBuilder.Log(
|
---|
275 | TransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames));
|
---|
276 | if (node.Symbol is Exponential)
|
---|
277 | return AutoDiff.TermBuilder.Exp(
|
---|
278 | TransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames));
|
---|
279 | if (node.Symbol is StartSymbol) {
|
---|
280 | var alpha = new AutoDiff.Variable();
|
---|
281 | var beta = new AutoDiff.Variable();
|
---|
282 | variables.Add(beta);
|
---|
283 | variables.Add(alpha);
|
---|
284 | return TransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames) * alpha + beta;
|
---|
285 | }
|
---|
286 | throw new NotImplementedException();
|
---|
287 | }
|
---|
288 |
|
---|
289 | private static alglib.ndimensional_fvec CreateCallBack(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, double upperEstimationLimit, double lowerEstimationLimit, int treeLength, IntValue evaluatedTrees = null, IntValue evaluatedTreeNodes = null) {
|
---|
290 | return (double[] arg, double[] fi, object obj) => {
|
---|
291 | // update constants of tree
|
---|
292 | List<SymbolicExpressionTreeTerminalNode> terminalNodes = (List<SymbolicExpressionTreeTerminalNode>)obj;
|
---|
293 | for (int i = 0; i < terminalNodes.Count; i++) {
|
---|
294 | ConstantTreeNode constantTreeNode = terminalNodes[i] as ConstantTreeNode;
|
---|
295 | if (constantTreeNode != null) constantTreeNode.Value = arg[i];
|
---|
296 | VariableTreeNode variableTreeNode = terminalNodes[i] as VariableTreeNode;
|
---|
297 | if (variableTreeNode != null) variableTreeNode.Weight = arg[i];
|
---|
298 | }
|
---|
299 |
|
---|
300 | double quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows);
|
---|
301 |
|
---|
302 | fi[0] = 1 - quality;
|
---|
303 | if (evaluatedTrees != null) evaluatedTrees.Value++;
|
---|
304 | if (evaluatedTreeNodes != null) evaluatedTreeNodes.Value += treeLength;
|
---|
305 | };
|
---|
306 | }
|
---|
307 |
|
---|
308 | }
|
---|
309 | }
|
---|