Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Collections/sources/HeuristicLab.StructureIdentification/TreeGardener.cs @ 583

Last change on this file since 583 was 325, checked in by gkronber, 17 years ago

extend only trees that are at least the specified size

File size: 23.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Text;
25using HeuristicLab.Core;
26using HeuristicLab.Constraints;
27using System.Diagnostics;
28using HeuristicLab.Data;
29using System.Linq;
30using HeuristicLab.Random;
31using HeuristicLab.Operators;
32using HeuristicLab.Selection;
33using HeuristicLab.Functions;
34using System.Collections;
35
36namespace HeuristicLab.StructureIdentification {
37  internal class TreeGardener {
38    private IRandom random;
39    private GPOperatorLibrary funLibrary;
40    private List<IFunction> functions;
41
42    private List<IFunction> terminals;
43    internal IList<IFunction> Terminals {
44      get { return terminals; }
45    }
46
47    private List<IFunction> allFunctions;
48    internal IList<IFunction> AllFunctions {
49      get { return allFunctions; }
50    }
51
52    #region constructors
53    internal TreeGardener(IRandom random, GPOperatorLibrary funLibrary) {
54      this.random = random;
55      this.funLibrary = funLibrary;
56      this.allFunctions = new List<IFunction>();
57      terminals = new List<IFunction>();
58      functions = new List<IFunction>();
59      // init functions and terminals based on constraints
60      foreach(IFunction fun in funLibrary.Group.Operators) {
61        int maxA, minA;
62        GetMinMaxArity(fun, out minA, out maxA);
63        if(maxA == 0) {
64          terminals.Add(fun);
65          allFunctions.Add(fun);
66        } else {
67          functions.Add(fun);
68          allFunctions.Add(fun);
69        }
70      }
71    }
72    #endregion
73
74    #region random initialization
75    /// <summary>
76    /// Creates a random balanced tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
77    /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
78    /// </summary>
79    /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
80    /// <param name="maxTreeHeight">Maximal height of the tree.</param>
81    /// <returns></returns>
82    internal IFunctionTree CreateBalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
83      IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
84      IFunctionTree tree = MakeBalancedTree(rootFunction, maxTreeSize - 1, maxTreeHeight - 1);
85      return tree;
86    }
87
88    /// <summary>
89    /// Creates a random (unbalanced) tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
90    /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
91    /// </summary>
92    /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
93    /// <param name="maxTreeHeight">Maximal height of the tree.</param>
94    /// <returns></returns>
95    internal IFunctionTree CreateUnbalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
96      IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
97      IFunctionTree tree = MakeUnbalancedTree(rootFunction, maxTreeSize - 1, maxTreeHeight - 1);
98      return tree;
99    }
100
101    internal IFunctionTree PTC2(IRandom random, int size, int maxDepth) {
102      if(size == 1) return RandomSelect(terminals).GetTreeNode();
103      List<object[]> list = new List<object[]>();
104      IFunctionTree root = GetRandomRoot(size, maxDepth).GetTreeNode();
105      int currentSize = 1;
106      int minArity;
107      int maxArity;
108      GetMinMaxArity(root.Function, out minArity, out maxArity);
109      if(maxArity >= size) {
110        maxArity = size;
111      }
112      int actualArity = random.Next(minArity, maxArity + 1);
113      for(int i=0;i<actualArity;i++) {
114        // insert a dummy sub-tree and add the pending extension to the list
115        root.AddSubTree(null);
116        list.Add(new object[] {root, i, 2});
117      }
118
119      while(list.Count > 0 && list.Count + currentSize < size) {
120        int randomIndex = random.Next(list.Count);
121        object[] nextExtension = list[randomIndex];
122        list.RemoveAt(randomIndex);
123        IFunctionTree parent = (IFunctionTree)nextExtension[0];
124        int a = (int)nextExtension[1];
125        int d = (int)nextExtension[2];
126        if(d == maxDepth) {
127          parent.RemoveSubTree(a);
128          parent.InsertSubTree(a, RandomSelect(GetAllowedSubFunctions(parent.Function, a).Where(f => IsTerminal(f)).ToArray()).GetTreeNode());
129        } else {
130          IFunction selectedFunction = RandomSelect(GetAllowedSubFunctions(parent.Function, a).Where(
131            f => !IsTerminal(f) && GetMinimalTreeHeight(f) + (d-1) <= maxDepth).ToArray());
132          IFunctionTree newTree = selectedFunction.GetTreeNode();
133          parent.RemoveSubTree(a);
134          parent.InsertSubTree(a, newTree);
135
136          GetMinMaxArity(selectedFunction, out minArity, out maxArity);
137          if(maxArity >= size) {
138            maxArity = size;
139          }
140          actualArity = random.Next(minArity, maxArity + 1);
141          for(int i = 0; i < actualArity; i++) {
142            // insert a dummy sub-tree and add the pending extension to the list
143            newTree.AddSubTree(null);
144            list.Add(new object[] { newTree, i, d + 1 });
145          }
146        }
147        currentSize++;
148      }
149      while(list.Count > 0) {
150        int randomIndex = random.Next(list.Count);
151        object[] nextExtension = list[randomIndex];
152        list.RemoveAt(randomIndex);
153        IFunctionTree parent = (IFunctionTree)nextExtension[0];
154        int a = (int)nextExtension[1];
155        int d = (int)nextExtension[2];
156        parent.RemoveSubTree(a);
157        parent.InsertSubTree(a, CreateRandomTree(GetAllowedSubFunctions(parent.Function, a), 1, 1)); // append a tree with minimal possible height
158      }
159      return root;
160    }
161
162    /// <summary>
163    /// selects a random function from allowedFunctions and creates a random (unbalanced) tree with maximal size and height.
164    /// </summary>
165    /// <param name="allowedFunctions">Set of allowed functions.</param>
166    /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
167    /// <param name="maxTreeHeight">Maximal height of the tree.</param>
168    /// <returns>New random unbalanced tree</returns>
169    internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight) {
170      // default is non-balanced trees
171      return CreateRandomTree(allowedFunctions, maxTreeSize, maxTreeHeight, false);
172    }
173
174    /// <summary>
175    /// Selects a random function from allowedFunctions and creates a (un)balanced random tree with maximal size and height.
176    /// Max-size and max-height are not accepted as hard constraints, if all functions in the set of allowed functions would
177    /// lead to a bigger tree then the limits are automatically extended to guarantee that we can build a tree.
178    /// </summary>
179    /// <param name="allowedFunctions">Set of allowed functions.</param>
180    /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
181    /// <param name="maxTreeHeight">Maximal height of the tree.</param>
182    /// <param name="balanceTrees">Flag determining whether the tree should be balanced or not.</param>
183    /// <returns>New random tree</returns>
184    internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight, bool balanceTrees) {
185      // get the minimal needed height based on allowed functions and extend the max-height if necessary
186      int minTreeHeight = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data).Min();
187      if(minTreeHeight > maxTreeHeight)
188        maxTreeHeight = minTreeHeight;
189      // get the minimal needed size based on allowed functions and extend the max-size if necessary
190      int minTreeSize = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data).Min();
191      if(minTreeSize > maxTreeSize)
192        maxTreeSize = minTreeSize;
193
194      // select a random value for the size and height
195      int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1);
196      int treeSize = random.Next(minTreeSize, maxTreeSize + 1);
197
198      // filter the set of allowed functions and select only from those that fit into the given maximal size and height limits
199      IFunction[] possibleFunctions = allowedFunctions.Where(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data <= treeHeight &&
200        ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data <= treeSize).ToArray();
201      IFunction selectedFunction = RandomSelect(possibleFunctions);
202
203      // build the tree
204      IFunctionTree root;
205      if(balanceTrees) {
206        root = MakeBalancedTree(selectedFunction, maxTreeSize - 1, maxTreeHeight - 1);
207      } else {
208        root = MakeUnbalancedTree(selectedFunction, maxTreeSize - 1, maxTreeHeight - 1);
209      }
210      return root;
211    }
212
213    internal CompositeOperation CreateInitializationOperation(ICollection<IFunctionTree> trees, IScope scope) {
214      // needed for the parameter shaking operation
215      CompositeOperation initializationOperation = new CompositeOperation();
216      Scope tempScope = new Scope("Temp. initialization scope");
217
218      var parametricTrees = trees.Where(t => t.Function.GetVariable(GPOperatorLibrary.INITIALIZATION) != null);
219      foreach(IFunctionTree tree in parametricTrees) {
220        // enqueue an initialization operation for each operator with local variables
221        IOperator initialization = (IOperator)tree.Function.GetVariable(GPOperatorLibrary.INITIALIZATION).Value;
222        Scope initScope = new Scope();
223        // copy the local variables into a temporary scope used for initialization
224        foreach(IVariable variable in tree.LocalVariables) {
225          initScope.AddVariable(variable);
226        }
227        tempScope.AddSubScope(initScope);
228        initializationOperation.AddOperation(new AtomicOperation(initialization, initScope));
229      }
230      Scope backupScope = new Scope("backup");
231      foreach(Scope subScope in scope.SubScopes) {
232        backupScope.AddSubScope(subScope);
233      }
234      scope.AddSubScope(tempScope);
235      scope.AddSubScope(backupScope);
236      // add an operation to remove the temporary scopes       
237      initializationOperation.AddOperation(new AtomicOperation(new RightReducer(), scope));
238      return initializationOperation;
239    }
240    #endregion
241
242    #region tree information gathering
243    //internal int GetTreeSize(IFunctionTree tree) {
244    //  return 1 + tree.SubTrees.Sum(f => GetTreeSize(f));
245    //}
246
247    //internal int GetTreeHeight(IFunctionTree tree) {
248    //  if(tree.SubTrees.Count == 0) return 1;
249    //  return 1 + tree.SubTrees.Max(f => GetTreeHeight(f));
250    //}
251
252    internal IFunctionTree GetRandomParentNode(IFunctionTree tree) {
253      List<IFunctionTree> parentNodes = new List<IFunctionTree>();
254
255      // add null for the parent of the root node
256      parentNodes.Add(null);
257
258      TreeForEach(tree, delegate(IFunctionTree possibleParentNode) {
259        if(possibleParentNode.SubTrees.Count > 0) {
260          parentNodes.Add(possibleParentNode);
261        }
262      });
263
264      return parentNodes[random.Next(parentNodes.Count)];
265    }
266
267    internal ICollection<IFunctionTree> GetAllSubTrees(IFunctionTree root) {
268      List<IFunctionTree> allTrees = new List<IFunctionTree>();
269      TreeForEach(root, t => { allTrees.Add(t); });
270      return allTrees;
271    }
272
273    /// <summary>
274    /// returns the height level of branch in the tree
275    /// if the branch == tree => 1
276    /// if branch is in the sub-trees of tree => 2
277    /// ...
278    /// if branch is not found => -1
279    /// </summary>
280    /// <param name="tree">root of the function tree to process</param>
281    /// <param name="branch">branch that is searched in the tree</param>
282    /// <returns></returns>
283    internal int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) {
284      return GetBranchLevelHelper(tree, branch, 1);
285    }
286
287    // 'tail-recursive' helper
288    private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) {
289      if(branch == tree) return level;
290
291      foreach(IFunctionTree subTree in tree.SubTrees) {
292        int result = GetBranchLevelHelper(subTree, branch, level + 1);
293        if(result != -1) return result;
294      }
295
296      return -1;
297    }
298
299    internal bool IsValidTree(IFunctionTree tree) {
300      foreach(IConstraint constraint in tree.Function.Constraints) {
301        if(constraint is NumberOfSubOperatorsConstraint) {
302          int max = ((NumberOfSubOperatorsConstraint)constraint).MaxOperators.Data;
303          int min = ((NumberOfSubOperatorsConstraint)constraint).MinOperators.Data;
304          if(tree.SubTrees.Count < min || tree.SubTrees.Count > max)
305            return false;
306        }
307      }
308      foreach(IFunctionTree subTree in tree.SubTrees) {
309        if(!IsValidTree(subTree)) return false;
310      }
311      return true;
312    }
313
314    // returns a random branch from the specified level in the tree
315    internal IFunctionTree GetRandomBranch(IFunctionTree tree, int level) {
316      if(level == 0) return tree;
317      List<IFunctionTree> branches = GetBranchesAtLevel(tree, level);
318      return branches[random.Next(branches.Count)];
319    }
320    #endregion
321
322    #region function information (arity, allowed childs and parents)
323    internal ICollection<IFunction> GetPossibleParents(List<IFunction> list) {
324      List<IFunction> result = new List<IFunction>();
325      foreach(IFunction f in functions) {
326        if(IsPossibleParent(f, list)) {
327          result.Add(f);
328        }
329      }
330      return result;
331    }
332
333    private bool IsPossibleParent(IFunction f, List<IFunction> children) {
334      int minArity;
335      int maxArity;
336      GetMinMaxArity(f, out minArity, out maxArity);
337
338      // note: we can't assume that the operators in the children list have different types!
339
340      // when the maxArity of this function is smaller than the list of operators that
341      // should be included as sub-operators then it can't be a parent
342      if(maxArity < children.Count()) {
343        return false;
344      }
345      int nSlots = Math.Max(minArity, children.Count);
346
347      SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
348      analyzer.AllPossibleOperators = children.Cast<IOperator>().ToArray<IOperator>();
349
350      List<HashSet<IFunction>> slotSets = new List<HashSet<IFunction>>();
351
352      // we iterate through all slots for sub-trees and calculate the set of
353      // allowed functions for this slot.
354      // we only count those slots that can hold at least one of the children that we should combine
355      for(int slot = 0; slot < nSlots; slot++) {
356        HashSet<IFunction> functionSet = new HashSet<IFunction>(analyzer.GetAllowedOperators(f, slot).Cast<IFunction>());
357        if(functionSet.Count() > 0) {
358          slotSets.Add(functionSet);
359        }
360      }
361
362      // ok at the end of this operation we know how many slots of the parent can actually
363      // hold one of our children.
364      // if the number of slots is smaller than the number of children we can be sure that
365      // we can never combine all children as sub-trees of the function and thus the function
366      // can't be a parent.
367      if(slotSets.Count() < children.Count()) {
368        return false;
369      }
370
371      // finally we sort the sets by size and beginning from the first set select one
372      // function for the slot and thus remove it as possible sub-tree from the remaining sets.
373      // when we can successfully assign all available children to a slot the function is a valid parent
374      // when only a subset of all children can be assigned to slots the function is no valid parent
375      slotSets.Sort((p, q) => p.Count() - q.Count());
376
377      int assignments = 0;
378      for(int i = 0; i < slotSets.Count() - 1; i++) {
379        if(slotSets[i].Count > 0) {
380          IFunction selected = slotSets[i].ElementAt(0);
381          assignments++;
382          for(int j = i + 1; j < slotSets.Count(); j++) {
383            slotSets[j].Remove(selected);
384          }
385        }
386      }
387
388      // sanity check
389      if(assignments > children.Count) throw new InvalidProgramException();
390      return assignments == children.Count - 1;
391    }
392    internal IList<IFunction> GetAllowedParents(IFunction child, int childIndex) {
393      List<IFunction> parents = new List<IFunction>();
394      foreach(IFunction function in functions) {
395        ICollection<IFunction> allowedSubFunctions = GetAllowedSubFunctions(function, childIndex);
396        if(allowedSubFunctions.Contains(child)) {
397          parents.Add(function);
398        }
399      }
400      return parents;
401    }
402    internal bool IsTerminal(IFunction f) {
403      int minArity;
404      int maxArity;
405      GetMinMaxArity(f, out minArity, out maxArity);
406      return minArity == 0 && maxArity == 0;
407    }
408    internal IList<IFunction> GetAllowedSubFunctions(IFunction f, int index) {
409      if(f == null) {
410        return allFunctions;
411      } else {
412        ItemList slotList = (ItemList)f.GetVariable(GPOperatorLibrary.ALLOWED_SUBOPERATORS).Value;
413        List<IFunction> result = new List<IFunction>();
414        foreach(IFunction function in (ItemList)slotList[index]) {
415          result.Add(function);
416        }
417        return result;
418      }
419    }
420    internal void GetMinMaxArity(IFunction f, out int minArity, out int maxArity) {
421      foreach(IConstraint constraint in f.Constraints) {
422        NumberOfSubOperatorsConstraint theConstraint = constraint as NumberOfSubOperatorsConstraint;
423        if(theConstraint != null) {
424          minArity = theConstraint.MinOperators.Data;
425          maxArity = theConstraint.MaxOperators.Data;
426          return;
427        }
428      }
429      // the default arity is 2
430      minArity = 2;
431      maxArity = 2;
432    }
433    #endregion
434
435    #region private utility methods
436    private IFunction GetRandomRoot(int maxTreeSize, int maxTreeHeight) {
437      if(maxTreeHeight == 1 || maxTreeSize == 1) {
438        IFunction selectedTerminal = RandomSelect(terminals);
439        return selectedTerminal;
440      } else {
441        IFunction[] possibleFunctions = functions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
442          GetMinimalTreeSize(f) <= maxTreeSize).ToArray();
443        IFunction selectedFunction = RandomSelect(possibleFunctions);
444        return selectedFunction;
445      }
446    }
447
448    private IFunctionTree MakeUnbalancedTree(IFunction parent, int maxTreeSize, int maxTreeHeight) {
449      if(maxTreeHeight == 0 || maxTreeSize == 0) return parent.GetTreeNode();
450      int minArity;
451      int maxArity;
452      GetMinMaxArity(parent, out minArity, out maxArity);
453      if(maxArity >= maxTreeSize) {
454        maxArity = maxTreeSize;
455      }
456      int actualArity = random.Next(minArity, maxArity + 1);
457      if(actualArity > 0) {
458        IFunctionTree parentTree = parent.GetTreeNode();
459        int maxSubTreeSize = maxTreeSize / actualArity;
460        for(int i = 0; i < actualArity; i++) {
461          IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
462            GetMinimalTreeSize(f) <= maxSubTreeSize).ToArray();
463          IFunction selectedFunction = RandomSelect(possibleFunctions);
464          IFunctionTree newSubTree = MakeUnbalancedTree(selectedFunction, maxSubTreeSize - 1, maxTreeHeight - 1);
465          parentTree.InsertSubTree(i, newSubTree);
466        }
467        return parentTree;
468      }
469      return parent.GetTreeNode();
470    }
471
472    // NOTE: this method doesn't build fully balanced trees because we have constraints on the
473    // types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree
474    private IFunctionTree MakeBalancedTree(IFunction parent, int maxTreeSize, int maxTreeHeight) {
475      if(maxTreeHeight == 0 || maxTreeSize == 0) return parent.GetTreeNode();
476      int minArity;
477      int maxArity;
478      GetMinMaxArity(parent, out minArity, out maxArity);
479      if(maxArity >= maxTreeSize) {
480        maxArity = maxTreeSize;
481      }
482      int actualArity = random.Next(minArity, maxArity + 1);
483      if(actualArity > 0) {
484        IFunctionTree parentTree = parent.GetTreeNode();
485        int maxSubTreeSize = maxTreeSize / actualArity;
486        for(int i = 0; i < actualArity; i++) {
487          // first try to find a function that fits into the maxHeight and maxSize limits
488          IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(
489            f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
490            GetMinimalTreeSize(f) <= maxSubTreeSize &&
491            !IsTerminal(f)).ToArray();
492          // no possible function found => extend function set to terminals
493          if(possibleFunctions.Length == 0) {
494            possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => IsTerminal(f)).ToArray();
495            IFunction selectedTerminal = RandomSelect(possibleFunctions);
496            IFunctionTree newTree = selectedTerminal.GetTreeNode();
497            parentTree.InsertSubTree(i, newTree);
498          } else {
499            IFunction selectedFunction = RandomSelect(possibleFunctions);
500            IFunctionTree newTree = MakeBalancedTree(selectedFunction, maxSubTreeSize - 1, maxTreeHeight - 1);
501            parentTree.InsertSubTree(i, newTree);
502          }
503        }
504        return parentTree;
505      }
506      return parent.GetTreeNode();
507    }
508
509    private int GetMinimalTreeHeight(IOperator op) {
510      return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data;
511    }
512
513    private int GetMinimalTreeSize(IOperator op) {
514      return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data;
515    }
516
517    private void TreeForEach(IFunctionTree tree, Action<IFunctionTree> action) {
518      action(tree);
519      foreach(IFunctionTree subTree in tree.SubTrees) {
520        TreeForEach(subTree, action);
521      }
522    }
523
524    private List<IFunctionTree> GetBranchesAtLevel(IFunctionTree tree, int level) {
525      if(level == 1) return new List<IFunctionTree>(tree.SubTrees);
526
527      List<IFunctionTree> branches = new List<IFunctionTree>();
528      foreach(IFunctionTree subTree in tree.SubTrees) {
529        if(subTree.Height>=level-1)
530        branches.AddRange(GetBranchesAtLevel(subTree, level - 1));
531      }
532      return branches;
533    }
534
535    private IFunction RandomSelect(IList<IFunction> functionSet) {
536      double[] accumulatedTickets = new double[functionSet.Count];
537      double ticketAccumulator = 0;
538      int i = 0;
539      // precalculate the slot-sizes
540      foreach(IFunction function in functionSet) {
541        ticketAccumulator += ((DoubleData)function.GetVariable(GPOperatorLibrary.TICKETS).Value).Data;
542        accumulatedTickets[i] = ticketAccumulator;
543        i++;
544      }
545      // throw ball
546      double r = random.NextDouble() * ticketAccumulator;
547      // find the slot that has been hit
548      for(i = 0; i < accumulatedTickets.Length; i++) {
549        if(r < accumulatedTickets[i]) return functionSet[i];
550      }
551      // sanity check
552      throw new InvalidProgramException(); // should never happen
553    }
554
555    #endregion
556
557  }
558}
Note: See TracBrowser for help on using the repository browser.