1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get {
|
---|
36 | return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
|
---|
37 | the 'Theil inequality coefficient (scale invariant)' of estimated values vs. real values of 'TargetVariable'.";
|
---|
38 | }
|
---|
39 | }
|
---|
40 |
|
---|
41 | public TheilInequalityCoefficientEvaluator()
|
---|
42 | : base() {
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
46 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
47 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
48 | double errorsSquaredSum = 0.0;
|
---|
49 | double estimatedSquaredSum = 0.0;
|
---|
50 | double originalSquaredSum = 0.0;
|
---|
51 | functionTree.PrepareEvaluation(dataset);
|
---|
52 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
53 | double prevValue = dataset.GetValue(sample - 1, targetVariable);
|
---|
54 | double estimatedChange = functionTree.Evaluate(sample) - prevValue;
|
---|
55 | double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
|
---|
56 | if(!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
|
---|
57 | if(double.IsNaN(estimatedChange) || double.IsInfinity(estimatedChange))
|
---|
58 | estimatedChange = maximumPunishment;
|
---|
59 | else if(estimatedChange > maximumPunishment)
|
---|
60 | estimatedChange = maximumPunishment;
|
---|
61 | else if(estimatedChange < -maximumPunishment)
|
---|
62 | estimatedChange = - maximumPunishment;
|
---|
63 |
|
---|
64 | double error = estimatedChange - originalChange;
|
---|
65 | errorsSquaredSum += error * error;
|
---|
66 | estimatedSquaredSum += estimatedChange * estimatedChange;
|
---|
67 | originalSquaredSum += originalChange * originalChange;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | int nSamples = trainingEnd - trainingStart;
|
---|
71 | double quality = Math.Sqrt(errorsSquaredSum / nSamples) / (Math.Sqrt(estimatedSquaredSum/nSamples) + Math.Sqrt(originalSquaredSum/nSamples));
|
---|
72 | if(double.IsNaN(quality) || double.IsInfinity(quality))
|
---|
73 | quality = double.MaxValue;
|
---|
74 | return quality;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | }
|
---|