1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class SimpleEvaluator : OperatorBase {
|
---|
34 | protected int treeSize;
|
---|
35 | protected double totalEvaluatedNodes;
|
---|
36 |
|
---|
37 | public SimpleEvaluator()
|
---|
38 | : base() {
|
---|
39 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
|
---|
44 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training samples in dataset", typeof(IntData), VariableKind.In));
|
---|
45 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training samples in dataset", typeof(IntData), VariableKind.In));
|
---|
46 | AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override IOperation Apply(IScope scope) {
|
---|
50 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
51 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
52 | IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
|
---|
53 | this.treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
54 | this.totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
|
---|
55 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
56 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
57 |
|
---|
58 | ItemList values = GetVariableValue<ItemList>("Values", scope, false, false);
|
---|
59 | if(values == null) {
|
---|
60 | values = new ItemList();
|
---|
61 | IVariableInfo info = GetVariableInfo("Values");
|
---|
62 | if(info.Local)
|
---|
63 | AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
|
---|
64 | else
|
---|
65 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
|
---|
66 | }
|
---|
67 | values.Clear();
|
---|
68 | functionTree.PrepareEvaluation(dataset);
|
---|
69 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
70 | ItemList row = new ItemList();
|
---|
71 | row.Add(new DoubleData(functionTree.Evaluate(sample)));
|
---|
72 | row.Add(new DoubleData(dataset.GetValue(sample, targetVariable)));
|
---|
73 | values.Add(row);
|
---|
74 | }
|
---|
75 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd - trainingStart);
|
---|
76 | return null;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|