Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Collections/sources/HeuristicLab.StructureIdentification/Evaluation/SimpleEvaluator.cs @ 634

Last change on this file since 634 was 363, checked in by gkronber, 17 years ago
  • implemented operator to store the best of run solution, in regard of a specific fitness variable).
  • adapted struct-id infrastructure to allow evaluation of models on validation data.

ticket #194

File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class SimpleEvaluator : OperatorBase {
34    protected int treeSize;
35    protected double totalEvaluatedNodes;
36
37    public SimpleEvaluator()
38      : base() {
39      AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
40      AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
42      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
44      AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training samples in dataset", typeof(IntData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training samples in dataset", typeof(IntData), VariableKind.In));
46      AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
47    }
48
49    public override IOperation Apply(IScope scope) {
50      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
51      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
52      IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
53      this.treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data;
54      this.totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
55      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
56      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
57
58      ItemList values = GetVariableValue<ItemList>("Values", scope, false, false);
59      if(values == null) {
60        values = new ItemList();
61        IVariableInfo info = GetVariableInfo("Values");
62        if(info.Local)
63          AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
64        else
65          scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
66      }
67      values.Clear();
68      functionTree.PrepareEvaluation(dataset);
69      for(int sample = trainingStart; sample < trainingEnd; sample++) {
70        ItemList row = new ItemList();
71        row.Add(new DoubleData(functionTree.Evaluate(sample)));
72        row.Add(new DoubleData(dataset.GetValue(sample, targetVariable)));
73        values.Add(row);
74      }
75      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd - trainingStart);
76      return null;
77    }
78  }
79}
Note: See TracBrowser for help on using the repository browser.