1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class MeanSquaredErrorEvaluator : GPEvaluatorBase {
|
---|
34 | protected double[] backupValues;
|
---|
35 | public override string Description {
|
---|
36 | get {
|
---|
37 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
|
---|
38 | for the estimated values vs. the real values of 'TargetVariable'.";
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public MeanSquaredErrorEvaluator()
|
---|
43 | : base() {
|
---|
44 | AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the targat variable when doing autoregressive modelling", typeof(BoolData), VariableKind.In));
|
---|
45 | GetVariableInfo("UseEstimatedTargetValue").Local = true;
|
---|
46 | AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData(false)));
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
50 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
51 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
52 | double errorsSquaredSum = 0;
|
---|
53 | double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
|
---|
54 | bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
|
---|
55 | if(useEstimatedValues && backupValues == null) {
|
---|
56 | backupValues = new double[trainingEnd - trainingStart];
|
---|
57 | for(int i = trainingStart; i < trainingEnd; i++) {
|
---|
58 | backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | functionTree.PrepareEvaluation(dataset);
|
---|
63 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
64 | double estimated = functionTree.Evaluate(sample);
|
---|
65 | double original = dataset.GetValue(sample, targetVariable);
|
---|
66 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
67 | estimated = targetMean + maximumPunishment;
|
---|
68 | } else if(estimated > targetMean + maximumPunishment) {
|
---|
69 | estimated = targetMean + maximumPunishment;
|
---|
70 | } else if(estimated < targetMean - maximumPunishment) {
|
---|
71 | estimated = targetMean - maximumPunishment;
|
---|
72 | }
|
---|
73 | double error = estimated - original;
|
---|
74 | errorsSquaredSum += error * error;
|
---|
75 | if(useEstimatedValues) {
|
---|
76 | dataset.SetValue(sample, targetVariable, estimated);
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
|
---|
81 | errorsSquaredSum /= (trainingEnd-trainingStart);
|
---|
82 | if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
83 | errorsSquaredSum = double.MaxValue;
|
---|
84 | }
|
---|
85 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd-trainingStart);
|
---|
86 | return errorsSquaredSum;
|
---|
87 | }
|
---|
88 |
|
---|
89 | private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
|
---|
90 | for(int i = from; i < to; i++) {
|
---|
91 | dataset.SetValue(i, targetVariable, backupValues[i-from]);
|
---|
92 | }
|
---|
93 | }
|
---|
94 | }
|
---|
95 | }
|
---|