Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Collections/sources/HeuristicLab.StructureIdentification/Evaluation/GPEvaluatorBase.cs @ 771

Last change on this file since 771 was 363, checked in by gkronber, 16 years ago
  • implemented operator to store the best of run solution, in regard of a specific fitness variable).
  • adapted struct-id infrastructure to allow evaluation of models on validation data.

ticket #194

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public abstract class GPEvaluatorBase : OperatorBase {
34    protected double maximumPunishment;
35    protected int treeSize;
36    protected double totalEvaluatedNodes;
37
38    public GPEvaluatorBase()
39      : base() {
40      AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
43      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
46      AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training samples in dataset", typeof(IntData), VariableKind.In));
47      AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training samples in dataset", typeof(IntData), VariableKind.In));
48      AddVariableInfo(new VariableInfo("Quality", "The evaluated quality of the model", typeof(DoubleData), VariableKind.New));
49    }
50
51    public override IOperation Apply(IScope scope) {
52      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
53      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
54      IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
55      this.maximumPunishment = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data * dataset.GetRange(targetVariable);
56      this.treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data;
57      this.totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
58      double result = Evaluate(scope, functionTree, targetVariable, dataset);
59
60      DoubleData quality = GetVariableValue<DoubleData>("Quality", scope, false, false);
61      if(quality == null) {
62        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Quality"), new DoubleData(result)));
63      } else {
64        quality.Data = result;
65      }
66
67      return null;
68    }
69
70    public abstract double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset);
71  }
72}
Note: See TracBrowser for help on using the repository browser.