Free cookie consent management tool by TermsFeed Policy Generator

source: branches/CloningRefactorBranch/HeuristicLab.GP/Recombination/LangdonHomologousCrossOver.cs @ 840

Last change on this file since 840 was 656, checked in by gkronber, 16 years ago

merged changesets r644:647 and r651:655 from the GpPluginsRefactoringBranch back into the trunk (#177)

File size: 14.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Operators;
28using HeuristicLab.Random;
29using HeuristicLab.Data;
30using HeuristicLab.Constraints;
31using System.Diagnostics;
32
33namespace HeuristicLab.GP {
34  /// <summary>
35  /// Implementation of a homologous crossover operator as described in:
36  /// William B. Langdon
37  /// Size Fair and Homologous Tree Genetic Programming Crossovers,
38  /// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000
39  /// </summary>
40  public class LangdonHomologousCrossOver : OperatorBase {
41    private const int MAX_RECOMBINATION_TRIES = 20;
42    public override string Description {
43      get {
44        return @"";
45      }
46    }
47    public LangdonHomologousCrossOver()
48      : base() {
49      AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
50      AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
51      AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
52      AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
53      AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
54      AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
55      AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
56    }
57
58    public override IOperation Apply(IScope scope) {
59      MersenneTwister random = GetVariableValue<MersenneTwister>("Random", scope, true);
60      GPOperatorLibrary opLibrary = GetVariableValue<GPOperatorLibrary>("OperatorLibrary", scope, true);
61      int maxTreeHeight = GetVariableValue<IntData>("MaxTreeHeight", scope, true).Data;
62      int maxTreeSize = GetVariableValue<IntData>("MaxTreeSize", scope, true).Data;
63
64      TreeGardener gardener = new TreeGardener(random, opLibrary);
65
66      if((scope.SubScopes.Count % 2) != 0)
67        throw new InvalidOperationException("Number of parents is not even");
68
69      CompositeOperation initOperations = new CompositeOperation();
70
71      int children = scope.SubScopes.Count / 2;
72      for(int i = 0; i < children; i++) {
73        IScope parent1 = scope.SubScopes[0];
74        scope.RemoveSubScope(parent1);
75        IScope parent2 = scope.SubScopes[0];
76        scope.RemoveSubScope(parent2);
77        IScope child = new Scope(i.ToString());
78        IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
79        initOperations.AddOperation(childInitOperation);
80        scope.AddSubScope(child);
81      }
82
83      return initOperations;
84    }
85
86    private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
87      IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
88      List<IFunctionTree> newBranches;
89      IFunctionTree newTree = Cross(gardener, parent1, parent2,
90        random, maxTreeSize, maxTreeHeight, out newBranches);
91
92
93      int newTreeSize = newTree.Size;
94      int newTreeHeight = newTree.Height;
95      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
96      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize)));
97      child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight)));
98
99      // check if the new tree is valid and if the height of is still in the allowed bounds (we are not so strict for the max-size)
100      Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize);
101      return gardener.CreateInitializationOperation(newBranches, child);
102    }
103
104
105    private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight, out List<IFunctionTree> newBranches) {
106      IFunctionTree tree0 = f.GetVariableValue<IFunctionTree>("FunctionTree", false);
107      int tree0Height = f.GetVariableValue<IntData>("TreeHeight", false).Data;
108      int tree0Size = f.GetVariableValue<IntData>("TreeSize", false).Data;
109
110      IFunctionTree tree1 = g.GetVariableValue<IFunctionTree>("FunctionTree", false);
111      int tree1Height = g.GetVariableValue<IntData>("TreeHeight", false).Data;
112      int tree1Size = g.GetVariableValue<IntData>("TreeSize", false).Data;
113
114      if(tree0Size == 1 && tree1Size == 1) {
115        return CombineTerminals(gardener, tree0, tree1, random, maxTreeHeight, out newBranches);
116      } else {
117        newBranches = new List<IFunctionTree>();
118
119        // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
120        // in case both trees are higher than 1 we swap the trees with probability 50%
121        if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
122          IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
123          int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
124          int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
125        }
126
127        // select a random suboperator of the 'receiving' tree
128        IFunctionTree crossoverPoint = gardener.GetRandomParentNode(tree0);
129        int removedBranchIndex;
130        IFunctionTree removedBranch;
131        IList<IFunction> allowedFunctions;
132        if(crossoverPoint == null) {
133          removedBranchIndex = 0;
134          removedBranch = tree0;
135          allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
136        } else {
137          removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
138          removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
139          allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
140        }
141        int removedBranchSize = removedBranch.Size;
142        int maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
143        int maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch);
144        List<int> removedBranchThread = GetThread(removedBranch, tree0);
145        IFunctionTree insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchThread, removedBranchSize, maxBranchSize, maxBranchHeight);
146
147        int tries = 0;
148        while(insertedBranch == null) {
149          if(tries++ > MAX_RECOMBINATION_TRIES) {
150            if(random.Next() > 0.5) return tree1;
151            else return tree0;
152          }
153
154          // retry with a different crossoverPoint       
155          crossoverPoint = gardener.GetRandomParentNode(tree0);
156          if(crossoverPoint == null) {
157            removedBranchIndex = 0;
158            removedBranch = tree0;
159            allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
160          } else {
161            removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
162            removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
163            allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
164          }
165          removedBranchSize = removedBranch.Size;
166          maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
167          maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
168          removedBranchThread = GetThread(removedBranch, tree0);
169          insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchThread, removedBranchSize, maxBranchSize, maxBranchHeight);
170        }
171        if(crossoverPoint != null) {
172          // replace the branch below the crossoverpoint with the selected branch from root1
173          crossoverPoint.RemoveSubTree(removedBranchIndex);
174          crossoverPoint.InsertSubTree(removedBranchIndex, insertedBranch);
175          return tree0;
176        } else {
177          return insertedBranch;
178        }
179      }
180    }
181
182    private IFunctionTree GetReplacementBranch(IRandom random, TreeGardener gardener, IList<IFunction> allowedFunctions, IFunctionTree tree, List<int> removedBranchThread, int removedBranchSize, int maxBranchSize, int maxBranchHeight) {
183      var branches = gardener.GetAllSubTrees(tree).Where(t => allowedFunctions.Contains(t.Function) && t.Size < maxBranchSize && t.Height < maxBranchHeight)
184        .Select(t => new { Tree = t, Size = t.Size, Thread = GetThread(t, tree) }).Where(s => s.Size < 2 * removedBranchSize + 1);
185
186      var shorterBranches = branches.Where(t => t.Size < removedBranchSize);
187      var longerBranches = branches.Where(t => t.Size > removedBranchSize);
188      var equalLengthBranches = branches.Where(t => t.Size == removedBranchSize);
189
190      if(shorterBranches.Count() == 0 || longerBranches.Count() == 0) {
191        if(equalLengthBranches.Count() == 0) {
192          return null;
193        } else {
194          return equalLengthBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
195        }
196      } else {
197        // invariant: |shorterBranches| > 0  and |longerBranches| > 0
198        double pEqualLength = equalLengthBranches.Count() > 0 ? 1.0 / removedBranchSize : 0.0;
199        double pLonger = (1.0 - pEqualLength) / (longerBranches.Count() * (1.0 + longerBranches.Average(t => t.Size) / shorterBranches.Average(t => t.Size)));
200        double pShorter = (1.0 - pEqualLength - pLonger);
201
202        double r = random.NextDouble();
203        if(r < pLonger) {
204          return longerBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
205        } else if(r < pLonger + pShorter) {
206          return shorterBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
207        } else {
208          return equalLengthBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
209        }
210      }
211    }
212
213    private int MatchingSteps(List<int> removedBranchThread, List<int> list) {
214      int n = Math.Min(removedBranchThread.Count, list.Count);
215      for(int i = 0; i < n; i++) if(removedBranchThread[i] != list[i]) return i;
216      return n;
217    }
218
219    private List<int> GetThread(IFunctionTree t, IFunctionTree tree) {
220      List<int> thread = new List<int>();
221      for(int i = 0; i < tree.SubTrees.Count; i++) {
222        if(t == tree.SubTrees[i]) {
223          thread.Add(i);
224          return thread;
225        } else {
226          thread.AddRange(GetThread(t, tree.SubTrees[i]));
227          if(thread.Count > 0) {
228            thread.Insert(0, i);
229            return thread;
230          }
231        }
232      }
233      return thread;
234    }
235
236
237    // take f and g and create a tree that has f and g as sub-trees
238    // example
239    //       O
240    //      /|\
241    //     g 2 f
242    //
243    private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random, int maxTreeHeight, out List<IFunctionTree> newBranches) {
244      newBranches = new List<IFunctionTree>();
245      // determine the set of possible parent functions
246      ICollection<IFunction> possibleParents = gardener.GetPossibleParents(new List<IFunction>() { f.Function, g.Function });
247      if(possibleParents.Count == 0) throw new InvalidProgramException();
248      // and select a random one
249      IFunctionTree parent = possibleParents.ElementAt(random.Next(possibleParents.Count())).GetTreeNode();
250
251      int nSlots = Math.Max(2, parent.Function.MinArity);
252      // determine which slot can take which sub-trees
253      List<IFunctionTree>[] slots = new List<IFunctionTree>[nSlots];
254      for(int slot = 0; slot < nSlots; slot++) {
255        ICollection<IFunction> allowedSubFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
256        List<IFunctionTree> allowedTrees = new List<IFunctionTree>();
257        if(allowedSubFunctions.Contains(f.Function)) allowedTrees.Add(f);
258        if(allowedSubFunctions.Contains(g.Function)) allowedTrees.Add(g);
259        slots[slot] = allowedTrees;
260      }
261      // fill the slots in the order of degrees of freedom
262      int[] slotSequence = Enumerable.Range(0, slots.Count()).OrderBy(slot => slots[slot].Count()).ToArray();
263
264      // tmp arry to store the tree for each sub-tree slot of the parent
265      IFunctionTree[] selectedFunctionTrees = new IFunctionTree[nSlots];
266
267      // fill the sub-tree slots of the parent starting with the slots that can take potentially both functions (f and g)
268      for(int i = 0; i < slotSequence.Length; i++) {
269        int slot = slotSequence[i];
270        List<IFunctionTree> allowedTrees = slots[slot];
271        // when neither f nor g fit into the slot => create a new random tree
272        if(allowedTrees.Count() == 0) {
273          var allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
274          selectedFunctionTrees[slot] = gardener.CreateRandomTree(allowedFunctions, 1, 1);
275          newBranches.AddRange(gardener.GetAllSubTrees(selectedFunctionTrees[slot]));
276        } else {
277          // select randomly which tree to insert into this slot
278          IFunctionTree selectedTree = allowedTrees[random.Next(allowedTrees.Count())];
279          selectedFunctionTrees[slot] = selectedTree;
280          // remove the tree that we used in this slot from following function-sets
281          for(int j = i + 1; j < slotSequence.Length; j++) {
282            int otherSlot = slotSequence[j];
283            slots[otherSlot].Remove(selectedTree);
284          }
285        }
286      }
287      // actually append the sub-trees to the parent tree
288      for(int i = 0; i < selectedFunctionTrees.Length; i++) {
289        parent.InsertSubTree(i, selectedFunctionTrees[i]);
290      }
291
292      return parent;
293    }
294  }
295}
Note: See TracBrowser for help on using the repository browser.