Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationModelComparison/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionErrorCharacteristicsCurveView.cs @ 12344

Last change on this file since 12344 was 10556, checked in by mkommend, 11 years ago

#1998: Updated classification model comparison branch with trunk changes (remaining changes).

File size: 9.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Windows.Forms;
26using System.Windows.Forms.DataVisualization.Charting;
27using HeuristicLab.MainForm;
28
29namespace HeuristicLab.Problems.DataAnalysis.Views {
30  [View("Error Characteristics Curve")]
31  [Content(typeof(IRegressionSolution))]
32  public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
33    protected const string TrainingSamples = "Training";
34    protected const string TestSamples = "Test";
35    protected const string AllSamples = "All Samples";
36
37    public RegressionSolutionErrorCharacteristicsCurveView()
38      : base() {
39      InitializeComponent();
40
41      cmbSamples.Items.Add(TrainingSamples);
42      cmbSamples.Items.Add(TestSamples);
43      cmbSamples.Items.Add(AllSamples);
44
45      cmbSamples.SelectedIndex = 0;
46
47      chart.CustomizeAllChartAreas();
48      chart.ChartAreas[0].AxisX.Title = "Absolute Error";
49      chart.ChartAreas[0].AxisX.Minimum = 0.0;
50      chart.ChartAreas[0].AxisX.Maximum = 1.0;
51      chart.ChartAreas[0].AxisX.IntervalAutoMode = IntervalAutoMode.VariableCount;
52      chart.ChartAreas[0].CursorX.Interval = 0.01;
53
54      chart.ChartAreas[0].AxisY.Title = "Ratio of Residuals";
55      chart.ChartAreas[0].AxisY.Minimum = 0.0;
56      chart.ChartAreas[0].AxisY.Maximum = 1.0;
57      chart.ChartAreas[0].AxisY.MajorGrid.Interval = 0.2;
58      chart.ChartAreas[0].CursorY.Interval = 0.01;
59    }
60
61    public new IRegressionSolution Content {
62      get { return (IRegressionSolution)base.Content; }
63      set { base.Content = value; }
64    }
65    public IRegressionProblemData ProblemData {
66      get {
67        if (Content == null) return null;
68        return Content.ProblemData;
69      }
70    }
71
72    protected override void RegisterContentEvents() {
73      base.RegisterContentEvents();
74      Content.ModelChanged += new EventHandler(Content_ModelChanged);
75      Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
76    }
77    protected override void DeregisterContentEvents() {
78      base.DeregisterContentEvents();
79      Content.ModelChanged -= new EventHandler(Content_ModelChanged);
80      Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
81    }
82
83    protected virtual void Content_ModelChanged(object sender, EventArgs e) {
84      if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ModelChanged, sender, e);
85      else UpdateChart();
86    }
87    protected virtual void Content_ProblemDataChanged(object sender, EventArgs e) {
88      if (InvokeRequired) Invoke((Action<object, EventArgs>)Content_ProblemDataChanged, sender, e);
89      else {
90        UpdateChart();
91      }
92    }
93    protected override void OnContentChanged() {
94      base.OnContentChanged();
95      UpdateChart();
96    }
97
98    protected virtual void UpdateChart() {
99      chart.Series.Clear();
100      chart.Annotations.Clear();
101      if (Content == null) return;
102
103      var constantModel = CreateConstantModel();
104      var originalValues = GetOriginalValues().ToList();
105      var baselineEstimatedValues = GetEstimatedValues(constantModel);
106      var baselineResiduals = GetResiduals(originalValues, baselineEstimatedValues);
107
108      baselineResiduals.Sort();
109      chart.ChartAreas[0].AxisX.Maximum = Math.Ceiling(baselineResiduals.Last());
110      chart.ChartAreas[0].CursorX.Interval = baselineResiduals.First() / 100;
111
112      Series baselineSeries = new Series("Baseline");
113      baselineSeries.ChartType = SeriesChartType.FastLine;
114      UpdateSeries(baselineResiduals, baselineSeries);
115      baselineSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(baselineSeries);
116      baselineSeries.Tag = constantModel;
117      baselineSeries.LegendToolTip = "Double-click to open model";
118      chart.Series.Add(baselineSeries);
119
120      AddRegressionSolution(Content);
121    }
122
123    protected void AddRegressionSolution(IRegressionSolution solution) {
124      if (chart.Series.Any(s => s.Name == solution.Name)) return;
125
126      Series solutionSeries = new Series(solution.Name);
127      solutionSeries.Tag = solution;
128      solutionSeries.ChartType = SeriesChartType.FastLine;
129      var estimatedValues = GetResiduals(GetOriginalValues(), GetEstimatedValues(solution));
130      UpdateSeries(estimatedValues, solutionSeries);
131      solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
132      solutionSeries.LegendToolTip = "Double-click to open model";
133      chart.Series.Add(solutionSeries);
134    }
135
136    protected void UpdateSeries(List<double> residuals, Series series) {
137      series.Points.Clear();
138      residuals.Sort();
139      if (!residuals.Any() || residuals.All(double.IsNaN)) return;
140
141      series.Points.AddXY(0, 0);
142      for (int i = 0; i < residuals.Count; i++) {
143        var point = new DataPoint();
144        if (residuals[i] > chart.ChartAreas[0].AxisX.Maximum) {
145          point.XValue = chart.ChartAreas[0].AxisX.Maximum;
146          point.YValues[0] = ((double)i) / residuals.Count;
147          point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
148          series.Points.Add(point);
149          break;
150        }
151
152        point.XValue = residuals[i];
153        point.YValues[0] = ((double)i + 1) / residuals.Count;
154        point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
155        series.Points.Add(point);
156      }
157
158      if (series.Points.Last().XValue < chart.ChartAreas[0].AxisX.Maximum) {
159        var point = new DataPoint();
160        point.XValue = chart.ChartAreas[0].AxisX.Maximum;
161        point.YValues[0] = 1;
162        point.ToolTip = "Error: " + point.XValue + "\n" + "Samples: " + point.YValues[0];
163        series.Points.Add(point);
164      }
165    }
166
167    protected IEnumerable<double> GetOriginalValues() {
168      IEnumerable<double> originalValues;
169      switch (cmbSamples.SelectedItem.ToString()) {
170        case TrainingSamples:
171          originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
172          break;
173        case TestSamples:
174          originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
175          break;
176        case AllSamples:
177          originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable);
178          break;
179        default:
180          throw new NotSupportedException();
181      }
182      return originalValues;
183    }
184
185    protected IEnumerable<double> GetEstimatedValues(IRegressionSolution solution) {
186      IEnumerable<double> estimatedValues;
187      switch (cmbSamples.SelectedItem.ToString()) {
188        case TrainingSamples:
189          estimatedValues = solution.EstimatedTrainingValues;
190          break;
191        case TestSamples:
192          estimatedValues = solution.EstimatedTestValues;
193          break;
194        case AllSamples:
195          estimatedValues = solution.EstimatedValues;
196          break;
197        default:
198          throw new NotSupportedException();
199      }
200      return estimatedValues;
201    }
202
203    protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
204      return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)).ToList();
205    }
206
207    private double CalculateAreaOverCurve(Series series) {
208      if (series.Points.Count < 1) return 0;
209
210      double auc = 0.0;
211      for (int i = 1; i < series.Points.Count; i++) {
212        double width = series.Points[i].XValue - series.Points[i - 1].XValue;
213        double y1 = 1 - series.Points[i - 1].YValues[0];
214        double y2 = 1 - series.Points[i].YValues[0];
215
216        auc += (y1 + y2) * width / 2;
217      }
218
219      return auc;
220    }
221
222    protected void cmbSamples_SelectedIndexChanged(object sender, EventArgs e) {
223      if (InvokeRequired) Invoke((Action<object, EventArgs>)cmbSamples_SelectedIndexChanged, sender, e);
224      else UpdateChart();
225    }
226
227    #region Baseline
228    private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
229      HitTestResult result = chart.HitTest(e.X, e.Y);
230      if (result.ChartElementType != ChartElementType.LegendItem) return;
231
232      MainFormManager.MainForm.ShowContent((IRegressionSolution)result.Series.Tag);
233    }
234
235    private IRegressionSolution CreateConstantModel() {
236      double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
237      var model = new ConstantRegressionModel(averageTrainingTarget);
238      var solution = new ConstantRegressionSolution(model,(IRegressionProblemData)ProblemData.Clone());
239      solution.Name = "Baseline";
240      return solution;
241    }
242    #endregion
243
244    private void chart_MouseMove(object sender, MouseEventArgs e) {
245      HitTestResult result = chart.HitTest(e.X, e.Y);
246      if (result.ChartElementType == ChartElementType.LegendItem) {
247        Cursor = Cursors.Hand;
248      } else {
249        Cursor = Cursors.Default;
250      }
251    }
252  }
253}
Note: See TracBrowser for help on using the repository browser.