Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationModelComparison/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/ZeroR.cs @ 9674

Last change on this file since 9674 was 9074, checked in by sforsten, 12 years ago

#1998:

  • added ZeroR and OneR classifiers
  • added ConstantClassificationModel/-Solution and OneRClassificationModel/-Solution
File size: 4.4 KB
RevLine 
[9074]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Optimization;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
32
33namespace HeuristicLab.Algorithms.DataAnalysis {
34  /// <summary>
35  /// 0R classification algorithm.
36  /// </summary>
37  [Item("ZeroR", "0R classification algorithm.")]
38  [Creatable("Data Analysis")]
39  [StorableClass]
40  public sealed class ZeroR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
41
42    [StorableConstructor]
43    private ZeroR(bool deserializing) : base(deserializing) { }
44    private ZeroR(ZeroR original, Cloner cloner)
45      : base(original, cloner) {
46    }
47    public ZeroR()
48      : base() {
49      Problem = new ClassificationProblem();
50    }
51
52    public override IDeepCloneable Clone(Cloner cloner) {
53      return new ZeroR(this, cloner);
54    }
55
56    protected override void Run() {
57      var solution = CreateZeroRSolution(Problem.ProblemData);
58      Results.Add(new Result("ZeroR solution", "The 0R classifier.", solution));
59    }
60
61    public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) {
62      Dataset dataset = problemData.Dataset;
63      string target = problemData.TargetVariable;
64      var classValuesEnumerator = problemData.ClassValues.GetEnumerator();
65      var classValuesInDatasetEnumerator = dataset.GetDoubleValues(target, problemData.TrainingIndices).GetEnumerator();
66
67      Dictionary<double, int> classValuesCount = new Dictionary<double, int>(problemData.ClassValues.Count());
68
69      //initialize
70      while (classValuesEnumerator.MoveNext()) {
71        classValuesCount[classValuesEnumerator.Current] = 0;
72      }
73
74      //count occurence of classes
75      while (classValuesInDatasetEnumerator.MoveNext()) {
76        classValuesCount[classValuesInDatasetEnumerator.Current] += 1;
77      }
78
79      classValuesEnumerator.Reset();
80      double mostOccurences = -1;
81      double bestClass = double.NaN;
82      while (classValuesEnumerator.MoveNext()) {
83        if (classValuesCount[classValuesEnumerator.Current] > mostOccurences) {
84          mostOccurences = classValuesCount[classValuesEnumerator.Current];
85          bestClass = classValuesEnumerator.Current;
86        }
87      }
88
89      ConstantClassificationModel model = new ConstantClassificationModel(bestClass);
90      ConstantClassificationSolution solution = new ConstantClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
91
92      return solution;
93    }
94
95    private static SymbolicDiscriminantFunctionClassificationModel CreateDiscriminantFunctionModel(ISymbolicExpressionTree tree,
96    ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
97    IClassificationProblemData problemData,
98    IEnumerable<int> rows,
99    IEnumerable<double> classValues) {
100      var model = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new AccuracyMaximizationThresholdCalculator());
101      IList<double> thresholds = new List<double>();
102      double last = 0;
103      foreach (double item in classValues) {
104        if (thresholds.Count == 0) {
105          thresholds.Add(double.NegativeInfinity);
106        } else {
107          thresholds.Add((last + item) / 2);
108        }
109        last = item;
110      }
111      model.SetThresholdsAndClassValues(thresholds, classValues);
112      return model;
113    }
114  }
115}
Note: See TracBrowser for help on using the repository browser.