[9074] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 | using HeuristicLab.Random;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// 1R classification algorithm.
|
---|
| 37 | /// </summary>
|
---|
| 38 | [Item("OneR", "1R classification algorithm.")]
|
---|
| 39 | [Creatable("Data Analysis")]
|
---|
| 40 | [StorableClass]
|
---|
| 41 | public sealed class OneR : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
| 42 |
|
---|
| 43 | public IValueParameter<IntValue> MinBucketSizeParameter {
|
---|
| 44 | get { return (IValueParameter<IntValue>)Parameters["MinBucketSize"]; }
|
---|
| 45 | }
|
---|
| 46 | public IValueParameter<IRandom> RandomParameter {
|
---|
| 47 | get { return (IValueParameter<IRandom>)Parameters["Random"]; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | [StorableConstructor]
|
---|
| 51 | private OneR(bool deserializing) : base(deserializing) { }
|
---|
| 52 | private OneR(OneR original, Cloner cloner)
|
---|
| 53 | : base(original, cloner) {
|
---|
| 54 | }
|
---|
| 55 | public OneR()
|
---|
| 56 | : base() {
|
---|
| 57 | Parameters.Add(new ValueParameter<IntValue>("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6)));
|
---|
| 58 | Parameters.Add(new ValueParameter<IRandom>("Random", "Random number generator", new FastRandom()));
|
---|
| 59 | Problem = new ClassificationProblem();
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 63 | return new OneR(this, cloner);
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | protected override void Run() {
|
---|
[10569] | 67 | var startTime = DateTime.Now;
|
---|
[9074] | 68 | var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value, RandomParameter.Value);
|
---|
| 69 | Results.Add(new Result("OneR solution", "The 1R classifier.", solution));
|
---|
[10569] | 70 | Results.Add(new Result("OneR Execution Time", "", new TimeSpanValue(DateTime.Now - startTime)));
|
---|
| 71 |
|
---|
| 72 | startTime = DateTime.Now;
|
---|
| 73 | var solution3 = OneRTest.CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value);
|
---|
| 74 | Results.Add(new Result("OneR Test2 solution", "The 1R classifier.", solution3));
|
---|
| 75 | Results.Add(new Result("OneR Test2 Execution", "", new TimeSpanValue(DateTime.Now - startTime)));
|
---|
[9074] | 76 | }
|
---|
| 77 |
|
---|
| 78 | public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize, IRandom random) {
|
---|
| 79 | Dataset dataset = problemData.Dataset;
|
---|
| 80 | var trainingIndices = problemData.TrainingIndices;
|
---|
| 81 | int rowCount = trainingIndices.Count();
|
---|
| 82 | string target = problemData.TargetVariable;
|
---|
| 83 | var inputVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 84 | var classValues = problemData.ClassValues.ToArray();
|
---|
| 85 | double dominatingClass;
|
---|
| 86 |
|
---|
| 87 | string bestVariable = null;
|
---|
| 88 | Dictionary<double, double> bestSplits = null;
|
---|
[9135] | 89 | double missingValuesClass = double.NaN;
|
---|
[9074] | 90 | int correctClassified = 0;
|
---|
| 91 |
|
---|
| 92 | for (int variable = 0; variable < inputVariables.Length; variable++) {
|
---|
| 93 | var inputVariableValues = dataset.GetDoubleValues(inputVariables[variable], trainingIndices).ToArray();
|
---|
| 94 | var classValuesInDataset = dataset.GetDoubleValues(target, trainingIndices).ToArray();
|
---|
| 95 |
|
---|
| 96 | int curCorrectClassified = 0;
|
---|
| 97 | Dictionary<double, int> classCount = PrepareClassCountDictionary(classValues);
|
---|
| 98 | Array.Sort(inputVariableValues, classValuesInDataset);
|
---|
| 99 | double curSplit = Double.NegativeInfinity;
|
---|
| 100 | Dictionary<double, double> splits = new Dictionary<double, double>();
|
---|
[9119] | 101 | bool newBucket = true;
|
---|
[9074] | 102 | bool done = false;
|
---|
[9119] | 103 | int curRow = 0;
|
---|
[9135] | 104 |
|
---|
| 105 | if (curRow < inputVariableValues.Length && Double.IsNaN(inputVariableValues[curRow])) {
|
---|
| 106 | while (curRow < inputVariableValues.Length && Double.IsNaN(inputVariableValues[curRow])) {
|
---|
| 107 | classCount[classValuesInDataset[curRow]] += 1;
|
---|
| 108 | curRow++;
|
---|
| 109 | }
|
---|
| 110 | if (ExistsDominatingClass(classCount, out dominatingClass)) {
|
---|
| 111 | missingValuesClass = dominatingClass;
|
---|
| 112 | } else {
|
---|
| 113 | missingValuesClass = GetRandomMaxClass(classCount, random);
|
---|
| 114 | }
|
---|
| 115 | correctClassified += classCount[missingValuesClass];
|
---|
| 116 | classCount = PrepareClassCountDictionary(classValues);
|
---|
| 117 | }
|
---|
[9119] | 118 | while (curRow < inputVariableValues.Length) {
|
---|
| 119 | if (newBucket) {
|
---|
| 120 | for (int i = 0; i < minBucketSize && curRow + i < inputVariableValues.Length; i++) {
|
---|
| 121 | classCount[classValuesInDataset[curRow + i]] += 1;
|
---|
| 122 | }
|
---|
| 123 | curRow += minBucketSize;
|
---|
| 124 | if (curRow >= inputVariableValues.Length) {
|
---|
| 125 | break;
|
---|
| 126 | }
|
---|
[9074] | 127 | curSplit = inputVariableValues[curRow];
|
---|
[9135] | 128 | curRow = SetCurRowToEndOfSplit(curRow, inputVariableValues, classValuesInDataset, classCount, curSplit);
|
---|
[9119] | 129 | newBucket = false;
|
---|
[9074] | 130 | }
|
---|
| 131 |
|
---|
| 132 | if (ExistsDominatingClass(classCount, out dominatingClass)) {
|
---|
[9119] | 133 | while (curRow + 1 < classValuesInDataset.Length &&
|
---|
[9135] | 134 | IsNextSplitStillDominatingClass(curRow, inputVariableValues, classValuesInDataset, curSplit, dominatingClass)) {
|
---|
[9119] | 135 | curRow++;
|
---|
[9135] | 136 | curSplit = inputVariableValues[curRow];
|
---|
| 137 | classCount[classValuesInDataset[curRow]] += 1;
|
---|
| 138 | curRow = SetCurRowToEndOfSplit(curRow, inputVariableValues, classValuesInDataset, classCount, curSplit);
|
---|
[9074] | 139 | }
|
---|
| 140 |
|
---|
| 141 | curCorrectClassified += classCount[dominatingClass];
|
---|
[9119] | 142 | done = curRow >= inputVariableValues.Length - 1;
|
---|
[9074] | 143 |
|
---|
| 144 | if (done) {
|
---|
| 145 | curSplit = Double.PositiveInfinity;
|
---|
| 146 | splits.Add(curSplit, dominatingClass);
|
---|
| 147 | break;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
[9119] | 150 | curRow++;
|
---|
[9074] | 151 | //intervals exclude end
|
---|
[9119] | 152 | curSplit = inputVariableValues[curRow];
|
---|
[9074] | 153 | splits.Add(curSplit, dominatingClass);
|
---|
| 154 |
|
---|
[9119] | 155 | //intervals include start
|
---|
| 156 | curSplit = inputVariableValues[curRow];
|
---|
[9074] | 157 | classCount = PrepareClassCountDictionary(classValues);
|
---|
[9119] | 158 | newBucket = true;
|
---|
[9074] | 159 | } else {
|
---|
| 160 | curSplit = inputVariableValues[curRow];
|
---|
| 161 | classCount[classValuesInDataset[curRow]] += 1;
|
---|
[9135] | 162 | curRow = SetCurRowToEndOfSplit(curRow, inputVariableValues, classValuesInDataset, classCount, curSplit);
|
---|
[9074] | 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | if (!done) {
|
---|
| 167 | curSplit = Double.PositiveInfinity;
|
---|
[9135] | 168 | double randomClass = GetRandomMaxClass(classCount, random);
|
---|
| 169 | splits.Add(curSplit, randomClass);
|
---|
[9074] | 170 |
|
---|
[9135] | 171 | curCorrectClassified += classCount[randomClass];
|
---|
[9074] | 172 | }
|
---|
| 173 |
|
---|
| 174 | if (curCorrectClassified > correctClassified) {
|
---|
| 175 | bestVariable = inputVariables[variable];
|
---|
| 176 | bestSplits = splits;
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | //merge intervals to simplify symbolic expression tree
|
---|
| 181 | Dictionary<double, double> mergedSplits = MergeSplits(bestSplits);
|
---|
| 182 |
|
---|
[9135] | 183 | var model = new OneRClassificationModel(bestVariable, mergedSplits.Keys.ToArray(), mergedSplits.Values.ToArray(), missingValuesClass);
|
---|
[9074] | 184 | var solution = new OneRClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
| 185 |
|
---|
| 186 | return solution;
|
---|
| 187 | }
|
---|
| 188 |
|
---|
[9135] | 189 | private static double GetRandomMaxClass(Dictionary<double, int> classCount, IRandom random) {
|
---|
| 190 | IList<double> possibleClasses = new List<double>();
|
---|
| 191 | int max = 0;
|
---|
| 192 | foreach (var item in classCount) {
|
---|
| 193 | if (max < item.Value) {
|
---|
| 194 | max = item.Value;
|
---|
| 195 | possibleClasses = new List<double>();
|
---|
| 196 | possibleClasses.Add(item.Key);
|
---|
| 197 | } else if (max == item.Value) {
|
---|
| 198 | possibleClasses.Add(item.Key);
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 | int classindex = random.Next(possibleClasses.Count);
|
---|
| 202 | return possibleClasses[classindex];
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | private static bool IsNextSplitStillDominatingClass(int curRow, double[] inputVariableValues, double[] classValuesInDataset, double curSplit, double dominatingClass) {
|
---|
[9119] | 206 | if (curRow >= classValuesInDataset.Length) {
|
---|
| 207 | return false;
|
---|
| 208 | }
|
---|
| 209 | double nextSplit = inputVariableValues[curRow + 1];
|
---|
| 210 | int i = 1;
|
---|
| 211 | while (curRow + i < classValuesInDataset.Length
|
---|
| 212 | && inputVariableValues[curRow + i] == nextSplit
|
---|
| 213 | && classValuesInDataset[curRow + i] == dominatingClass) {
|
---|
| 214 | i++;
|
---|
| 215 | }
|
---|
| 216 | if (curRow + i >= classValuesInDataset.Length) {
|
---|
| 217 | return true;
|
---|
| 218 | }
|
---|
| 219 | if (inputVariableValues[curRow + i] != nextSplit) {
|
---|
| 220 | return true;
|
---|
| 221 | }
|
---|
| 222 | // the next split would also contain values of a class which
|
---|
| 223 | // is not dominating (classValuesInDataset[curRow + i] != dominatingClass)
|
---|
| 224 | return false;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
[9135] | 227 | // needed if variable contains the same value several times
|
---|
| 228 | private static int SetCurRowToEndOfSplit(int curRow, double[] inputVariableValues, double[] classValuesInDataset, Dictionary<double, int> classCount, double curSplit) {
|
---|
[9119] | 229 | while (curRow + 1 < inputVariableValues.Length && inputVariableValues[curRow + 1] == curSplit) {
|
---|
| 230 | curRow++;
|
---|
| 231 | classCount[classValuesInDataset[curRow]] += 1;
|
---|
| 232 | }
|
---|
| 233 | return curRow;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
[9074] | 236 | private static Dictionary<double, double> MergeSplits(Dictionary<double, double> bestSplits) {
|
---|
| 237 | Dictionary<double, double> mergedSplits = new Dictionary<double, double>();
|
---|
| 238 | double nextSplit, nextClass;
|
---|
| 239 | nextSplit = nextClass = double.NaN;
|
---|
| 240 | foreach (var item in bestSplits) {
|
---|
| 241 | if (Double.IsNaN(nextSplit)) {
|
---|
| 242 | nextSplit = item.Key;
|
---|
| 243 | nextClass = item.Value;
|
---|
| 244 | } else {
|
---|
| 245 | if (nextClass == item.Value) {
|
---|
| 246 | nextSplit = item.Key;
|
---|
| 247 | } else {
|
---|
| 248 | mergedSplits.Add(nextSplit, nextClass);
|
---|
| 249 | nextSplit = item.Key;
|
---|
| 250 | nextClass = item.Value;
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | }
|
---|
| 254 | mergedSplits.Add(nextSplit, nextClass);
|
---|
| 255 | return mergedSplits;
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | private static bool ExistsDominatingClass(Dictionary<double, int> classCount, out double dominatingClass) {
|
---|
| 259 | bool dominating = false;
|
---|
| 260 | int count = 0;
|
---|
| 261 | dominatingClass = double.NaN;
|
---|
| 262 | foreach (var item in classCount) {
|
---|
| 263 | if (item.Value > count) {
|
---|
| 264 | dominatingClass = item.Key;
|
---|
| 265 | count = item.Value;
|
---|
| 266 | dominating = true;
|
---|
| 267 | } else if (item.Value == count) {
|
---|
| 268 | dominatingClass = double.NaN;
|
---|
| 269 | dominating = false;
|
---|
| 270 | }
|
---|
| 271 | }
|
---|
| 272 | return dominating;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | private static Dictionary<double, int> PrepareClassCountDictionary(double[] classValues) {
|
---|
| 276 | Dictionary<double, int> classCount = new Dictionary<double, int>();
|
---|
| 277 | for (int i = 0; i < classValues.Length; i++) {
|
---|
| 278 | classCount[classValues[i]] = 0;
|
---|
| 279 | }
|
---|
| 280 | return classCount;
|
---|
| 281 | }
|
---|
| 282 | }
|
---|
| 283 | }
|
---|