Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationEnsembleVoting/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/WeightCalculators/PointCertaintyWeightCalculator.cs @ 8534

Last change on this file since 8534 was 7549, checked in by sforsten, 13 years ago

#1776:

  • models can be selected with a check box
  • all strategies are now finished
  • major changes have been made to provide the same behaviour when getting the estimated training or test values of an ensemble
File size: 3.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  [StorableClass]
31  [Item("PointCertaintyWeightCalculator", "")]
32  public class PointCertaintyWeightCalculator : DiscriminantClassificationWeightCalculator {
33
34    public PointCertaintyWeightCalculator()
35      : base() {
36    }
37    [StorableConstructor]
38    protected PointCertaintyWeightCalculator(bool deserializing) : base(deserializing) { }
39    protected PointCertaintyWeightCalculator(PointCertaintyWeightCalculator original, Cloner cloner)
40      : base(original, cloner) {
41    }
42    public override IDeepCloneable Clone(Cloner cloner) {
43      return new PointCertaintyWeightCalculator(this, cloner);
44    }
45
46    protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
47      List<double> weights = new List<double>();
48      IClassificationProblemData problemData = discriminantSolutions.ElementAt(0).ProblemData;
49      // class Values are the same in all problem data sets
50      double avg = problemData.ClassValues.Average();
51
52      IEnumerable<double> targetValues;
53      IEnumerator<double> trainingValues;
54
55      foreach (var solution in discriminantSolutions) {
56        problemData = solution.ProblemData;
57        targetValues = GetValues(problemData.Dataset.GetDoubleValues(problemData.TargetVariable).ToList(), problemData.TrainingIndizes);
58        trainingValues = targetValues.GetEnumerator();
59
60        IEnumerator<double> estimatedTrainingVal = solution.EstimatedTrainingValues.GetEnumerator();
61        IEnumerator<double> estimatedTrainingClassVal = solution.EstimatedTrainingClassValues.GetEnumerator();
62
63        double curWeight = 0.0;
64        while (estimatedTrainingVal.MoveNext() && estimatedTrainingClassVal.MoveNext() && trainingValues.MoveNext()) {
65          if (estimatedTrainingClassVal.Current.Equals(trainingValues.Current)) {
66            curWeight += 0.5;
67            double distanceToPoint = Math.Abs(estimatedTrainingVal.Current - avg);
68            double distanceToClass = Math.Abs(trainingValues.Current - avg);
69            if (trainingValues.Current > avg && estimatedTrainingVal.Current > avg
70             || trainingValues.Current < avg && estimatedTrainingVal.Current < avg)
71              curWeight += distanceToPoint < distanceToClass ? (0.5 / distanceToClass) * distanceToPoint : 0.5;
72          }
73        }
74        // normalize the weight (otherwise a model with a bigger training partition would probably be better)
75        weights.Add(curWeight / targetValues.Count());
76      }
77      return weights;
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.