1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | ///
|
---|
32 | /// </summary>
|
---|
33 | [StorableClass]
|
---|
34 | [Item("NeighbourhoodWeightCalculator", "")]
|
---|
35 | public class NeighbourhoodWeightCalculator : DiscriminantClassificationWeightCalculator {
|
---|
36 |
|
---|
37 | public NeighbourhoodWeightCalculator()
|
---|
38 | : base() {
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | protected NeighbourhoodWeightCalculator(bool deserializing) : base(deserializing) { }
|
---|
43 | protected NeighbourhoodWeightCalculator(NeighbourhoodWeightCalculator original, Cloner cloner)
|
---|
44 | : base(original, cloner) {
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new NeighbourhoodWeightCalculator(this, cloner);
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
|
---|
52 | List<List<double>> estimatedValues = new List<List<double>>();
|
---|
53 | List<List<double>> estimatedClassValues = new List<List<double>>();
|
---|
54 |
|
---|
55 | List<IClassificationProblemData> solutionProblemData = discriminantSolutions.Select(sol => sol.ProblemData).ToList();
|
---|
56 | Dataset dataSet = solutionProblemData[0].Dataset;
|
---|
57 | IEnumerable<int> rows = Enumerable.Range(0, dataSet.Rows);
|
---|
58 | foreach (var solution in discriminantSolutions) {
|
---|
59 | estimatedValues.Add(solution.Model.GetEstimatedValues(dataSet, rows).ToList());
|
---|
60 | estimatedClassValues.Add(solution.Model.GetEstimatedClassValues(dataSet, rows).ToList());
|
---|
61 | }
|
---|
62 |
|
---|
63 | List<double> weights = Enumerable.Repeat<double>(0, solutionProblemData.Count).ToList<double>();
|
---|
64 | List<double> targetValues = dataSet.GetDoubleValues(solutionProblemData[0].TargetVariable).ToList();
|
---|
65 |
|
---|
66 | double pointAvg, help;
|
---|
67 | int count;
|
---|
68 | for (int point = 0; point < targetValues.Count; point++) {
|
---|
69 | pointAvg = 0.0;
|
---|
70 | count = 0;
|
---|
71 | for (int solutionPos = 0; solutionPos < estimatedClassValues.Count; solutionPos++) {
|
---|
72 | if (PointInTraining(solutionProblemData[solutionPos], point)
|
---|
73 | && estimatedClassValues[solutionPos][point].Equals(targetValues[point])) {
|
---|
74 | pointAvg += estimatedValues[solutionPos][point];
|
---|
75 | count++;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | pointAvg /= (double)count;
|
---|
79 | for (int solutionPos = 0; solutionPos < estimatedClassValues.Count; solutionPos++) {
|
---|
80 | if (PointInTraining(solutionProblemData[solutionPos], point)
|
---|
81 | && estimatedClassValues[solutionPos][point].Equals(targetValues[point])) {
|
---|
82 | weights[solutionPos] += 0.5;
|
---|
83 | help = Math.Abs(estimatedValues[solutionPos][point] - 0.5);
|
---|
84 | weights[solutionPos] += help < 0.5 ? 0.5 - help : 0.0;
|
---|
85 | }
|
---|
86 | }
|
---|
87 | }
|
---|
88 | // normalize the weight (otherwise a model with a bigger training partition would probably be better)
|
---|
89 | for (int i = 0; i < weights.Count; i++) {
|
---|
90 | weights[i] = weights[i] / solutionProblemData[i].TrainingIndizes.Count();
|
---|
91 | }
|
---|
92 | return weights;
|
---|
93 | }
|
---|
94 | }
|
---|
95 | }
|
---|