Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationEnsembleVoting/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/WeightCalculators/NeighbourhoodWeightCalculator.cs @ 7866

Last change on this file since 7866 was 7562, checked in by sforsten, 13 years ago

#1776:

  • bug fix in NeighbourhoodWeightCalculator
  • added GetConfidence method to IClassificationEnsembleSolutionWeightCalculator
  • adjusted the confidence column in ClassificationEnsembleSolutionEstimatedClassValuesView
File size: 4.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  /// <summary>
31  ///
32  /// </summary>
33  [StorableClass]
34  [Item("NeighbourhoodWeightCalculator", "")]
35  public class NeighbourhoodWeightCalculator : DiscriminantClassificationWeightCalculator {
36
37    public NeighbourhoodWeightCalculator()
38      : base() {
39    }
40
41    [StorableConstructor]
42    protected NeighbourhoodWeightCalculator(bool deserializing) : base(deserializing) { }
43    protected NeighbourhoodWeightCalculator(NeighbourhoodWeightCalculator original, Cloner cloner)
44      : base(original, cloner) {
45    }
46
47    public override IDeepCloneable Clone(Cloner cloner) {
48      return new NeighbourhoodWeightCalculator(this, cloner);
49    }
50
51    protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
52      List<List<double>> estimatedValues = new List<List<double>>();
53      List<List<double>> estimatedClassValues = new List<List<double>>();
54
55      List<IClassificationProblemData> solutionProblemData = discriminantSolutions.Select(sol => sol.ProblemData).ToList();
56      Dataset dataSet = solutionProblemData[0].Dataset;
57      IEnumerable<int> rows = Enumerable.Range(0, dataSet.Rows);
58      foreach (var solution in discriminantSolutions) {
59        estimatedValues.Add(solution.Model.GetEstimatedValues(dataSet, rows).ToList());
60        estimatedClassValues.Add(solution.Model.GetEstimatedClassValues(dataSet, rows).ToList());
61      }
62
63      List<double> weights = Enumerable.Repeat<double>(0, solutionProblemData.Count).ToList<double>();
64      List<double> targetValues = dataSet.GetDoubleValues(solutionProblemData[0].TargetVariable).ToList();
65
66      double pointAvg, help;
67      int count;
68      for (int point = 0; point < targetValues.Count; point++) {
69        pointAvg = 0.0;
70        count = 0;
71        for (int solutionPos = 0; solutionPos < estimatedClassValues.Count; solutionPos++) {
72          if (PointInTraining(solutionProblemData[solutionPos], point)
73              && estimatedClassValues[solutionPos][point].Equals(targetValues[point])) {
74            pointAvg += estimatedValues[solutionPos][point];
75            count++;
76          }
77        }
78        pointAvg /= (double)count;
79        for (int solutionPos = 0; solutionPos < estimatedClassValues.Count; solutionPos++) {
80          if (PointInTraining(solutionProblemData[solutionPos], point)
81              && estimatedClassValues[solutionPos][point].Equals(targetValues[point])) {
82            weights[solutionPos] += 0.5;
83            help = Math.Abs(estimatedValues[solutionPos][point] - 0.5);
84            weights[solutionPos] += help < 0.5 ? 0.5 - help : 0.0;
85          }
86        }
87      }
88      // normalize the weight (otherwise a model with a bigger training partition would probably be better)
89      for (int i = 0; i < weights.Count; i++) {
90        weights[i] = weights[i] / solutionProblemData[i].TrainingIndizes.Count();
91      }
92      return weights;
93    }
94  }
95}
Note: See TracBrowser for help on using the repository browser.