Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationEnsembleVoting/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/WeightCalculators/MedianThresholdCalculator.cs @ 7866

Last change on this file since 7866 was 7729, checked in by sforsten, 13 years ago

#1776:

  • bugfix the method GetEstimatedValues of DiscriminantClassificationWeightCalculator returns real values and not class values
  • changed arguments of method DiscriminantAggregateEstimatedClassValues of DiscriminantClassificationWeightCalculator
  • added two calculators
File size: 4.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  [StorableClass]
31  [Item("MedianThresholdCalculator", "")]
32  public class MedianThresholdCalculator : DiscriminantClassificationWeightCalculator {
33
34    public MedianThresholdCalculator()
35      : base() {
36    }
37    [StorableConstructor]
38    protected MedianThresholdCalculator(bool deserializing) : base(deserializing) { }
39    protected MedianThresholdCalculator(MedianThresholdCalculator original, Cloner cloner)
40      : base(original, cloner) {
41    }
42    public override IDeepCloneable Clone(Cloner cloner) {
43      return new MedianThresholdCalculator(this, cloner);
44    }
45
46    protected double[] threshold;
47    protected double[] classValues;
48
49    protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
50      classValues = discriminantSolutions.First().Model.ClassValues.ToArray();
51      var modelThresholds = discriminantSolutions.Select(x => x.Model.Thresholds.ToArray());
52      threshold = new double[modelThresholds.First().GetLength(0)];
53      for (int i = 0; i < modelThresholds.First().GetLength(0); i++) {
54        threshold[i] = GetMedian(modelThresholds.Select(x => x[i]).ToList());
55      }
56      return Enumerable.Repeat<double>(1, discriminantSolutions.Count());
57    }
58
59    protected override double DiscriminantAggregateEstimatedClassValues(IDictionary<IClassificationSolution, double> estimatedClassValues, IDictionary<IDiscriminantFunctionClassificationSolution, double> estimatedValues) {
60      IList<double> values = estimatedValues.Select(x => x.Value).ToList();
61      if (values.Count <= 0)
62        return double.NaN;
63      double median = GetMedian(values);
64      return GetClassValueToMedian(median);
65    }
66    private double GetClassValueToMedian(double median) {
67      double classValue = classValues.First();
68      for (int i = 0; i < classValues.Count(); i++) {
69        if (median > threshold[i])
70          classValue = classValues[i];
71        else
72          break;
73      }
74      return classValue;
75    }
76
77    protected override double GetDiscriminantConfidence(IEnumerable<IDiscriminantFunctionClassificationSolution> solutions, int index, double estimatedClassValue) {
78      // only works with binary classification
79      if (!classValues.Count().Equals(2))
80        return double.NaN;
81      Dataset dataset = solutions.First().ProblemData.Dataset;
82      IList<double> values = solutions.Select(s => s.Model.GetEstimatedValues(dataset, Enumerable.Repeat(index, 1)).First()).ToList();
83      if (values.Count <= 0)
84        return double.NaN;
85      double median = GetMedian(values);
86      if (estimatedClassValue.Equals(classValues[0])) {
87        if (median < estimatedClassValue)
88          return 1;
89        else if (median >= threshold[1])
90          return 0;
91        else {
92          double distance = threshold[1] - classValues[0];
93          return (1 / distance) * (threshold[1] - median);
94        }
95      } else if (estimatedClassValue.Equals(classValues[1])) {
96        if (median > estimatedClassValue)
97          return 1;
98        else if (median <= threshold[1])
99          return 0;
100        else {
101          double distance = classValues[1] - threshold[1];
102          return (1 / distance) * (median - threshold[1]);
103        }
104      } else
105        return double.NaN;
106    }
107
108    private double GetMedian(IList<double> estimatedValues) {
109      int count = estimatedValues.Count;
110      if (count % 2 == 0)
111        return 0.5 * (estimatedValues[count / 2 - 1] + estimatedValues[count / 2]);
112      else
113        return estimatedValues[count / 2];
114    }
115  }
116}
Note: See TracBrowser for help on using the repository browser.