1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Interfaces.Classification;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Base class for weight calculators for classification solutions in an ensemble.
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | public abstract class ClassificationWeightCalculator : NamedItem, IClassificationEnsembleSolutionWeightCalculator {
|
---|
36 | [StorableConstructor]
|
---|
37 | protected ClassificationWeightCalculator(bool deserializing) : base(deserializing) { }
|
---|
38 | protected ClassificationWeightCalculator(ClassificationWeightCalculator original, Cloner cloner)
|
---|
39 | : base(original, cloner) {
|
---|
40 | }
|
---|
41 | public ClassificationWeightCalculator()
|
---|
42 | : base() {
|
---|
43 | this.name = ItemName;
|
---|
44 | this.description = ItemDescription;
|
---|
45 | }
|
---|
46 |
|
---|
47 | private IDictionary<IClassificationSolution, double> weights;
|
---|
48 |
|
---|
49 | /// <summary>
|
---|
50 | /// calls CalculateWeights and removes negative weights
|
---|
51 | /// </summary>
|
---|
52 | /// <param name="classificationSolutions"></param>
|
---|
53 | /// <returns>weights which are equal or bigger than zero</returns>
|
---|
54 | public void CalculateNormalizedWeights(IEnumerable<IClassificationSolution> classificationSolutions) {
|
---|
55 | List<double> weights = new List<double>();
|
---|
56 | if (classificationSolutions.Count() > 0) {
|
---|
57 | foreach (var weight in CalculateWeights(classificationSolutions)) {
|
---|
58 | weights.Add(weight >= 0 ? weight : 0);
|
---|
59 | }
|
---|
60 | }
|
---|
61 | double sum = weights.Sum();
|
---|
62 | this.weights = classificationSolutions.Zip(weights, (sol, wei) => new { sol, wei }).ToDictionary(x => x.sol, x => x.wei / sum);
|
---|
63 | }
|
---|
64 |
|
---|
65 | protected abstract IEnumerable<double> CalculateWeights(IEnumerable<IClassificationSolution> classificationSolutions);
|
---|
66 |
|
---|
67 | #region delegate CheckPoint
|
---|
68 | public CheckPoint GetTestClassDelegate() {
|
---|
69 | return PointInTest;
|
---|
70 | }
|
---|
71 | public CheckPoint GetTrainingClassDelegate() {
|
---|
72 | return PointInTraining;
|
---|
73 | }
|
---|
74 | public CheckPoint GetAllClassDelegate() {
|
---|
75 | return AllPoints;
|
---|
76 | }
|
---|
77 | #endregion
|
---|
78 |
|
---|
79 | public virtual IEnumerable<double> AggregateEstimatedClassValues(IEnumerable<IClassificationSolution> solutions, Dataset dataset, IEnumerable<int> rows, CheckPoint handler) {
|
---|
80 | return from xs in GetEstimatedClassValues(solutions, dataset, rows, handler)
|
---|
81 | select AggregateEstimatedClassValues(xs);
|
---|
82 | }
|
---|
83 |
|
---|
84 | protected double AggregateEstimatedClassValues(IDictionary<IClassificationSolution, double> estimatedClassValues) {
|
---|
85 | IDictionary<double, double> weightSum = new Dictionary<double, double>();
|
---|
86 | foreach (var item in estimatedClassValues) {
|
---|
87 | if (!weightSum.ContainsKey(item.Value))
|
---|
88 | weightSum[item.Value] = 0.0;
|
---|
89 | weightSum[item.Value] += weights[item.Key];
|
---|
90 | }
|
---|
91 | if (weightSum.Count <= 0)
|
---|
92 | return double.NaN;
|
---|
93 | var max = weightSum.Max(x => x.Value);
|
---|
94 | max = weightSum
|
---|
95 | .Where(x => x.Value.Equals(max))
|
---|
96 | .Select(x => x.Key)
|
---|
97 | .First();
|
---|
98 | return max;
|
---|
99 | }
|
---|
100 |
|
---|
101 | protected IEnumerable<IDictionary<IClassificationSolution, double>> GetEstimatedClassValues(IEnumerable<IClassificationSolution> solutions, Dataset dataset, IEnumerable<int> rows, CheckPoint handler) {
|
---|
102 | var estimatedValuesEnumerators = (from solution in solutions
|
---|
103 | select new { Solution = solution, EstimatedValuesEnumerator = solution.Model.GetEstimatedClassValues(dataset, rows).GetEnumerator() })
|
---|
104 | .ToList();
|
---|
105 |
|
---|
106 | var rowEnumerator = rows.GetEnumerator();
|
---|
107 | while (rowEnumerator.MoveNext() & estimatedValuesEnumerators.All(x => x.EstimatedValuesEnumerator.MoveNext())) {
|
---|
108 | yield return (from enumerator in estimatedValuesEnumerators
|
---|
109 | where handler(enumerator.Solution.ProblemData, rowEnumerator.Current)
|
---|
110 | select enumerator)
|
---|
111 | .ToDictionary(x => x.Solution, x => x.EstimatedValuesEnumerator.Current);
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | public virtual double GetConfidence(IEnumerable<IClassificationSolution> solutions, int index, double estimatedClassValue) {
|
---|
116 | if (solutions.Count() < 1)
|
---|
117 | return double.NaN;
|
---|
118 | Dataset dataset = solutions.First().ProblemData.Dataset;
|
---|
119 | var correctSolutions = solutions.Select(s => new { Solution = s, Values = s.Model.GetEstimatedClassValues(dataset, Enumerable.Repeat(index, 1)).First() })
|
---|
120 | .Where(a => a.Values.Equals(estimatedClassValue))
|
---|
121 | .Select(a => a.Solution);
|
---|
122 | return (from sol in correctSolutions
|
---|
123 | select weights[sol]).Sum();
|
---|
124 | }
|
---|
125 |
|
---|
126 | #region Helper
|
---|
127 | protected IEnumerable<double> GetValues(IList<double> targetValues, IEnumerable<int> indizes) {
|
---|
128 | return from i in indizes
|
---|
129 | select targetValues[i];
|
---|
130 | }
|
---|
131 | protected bool PointInTraining(IClassificationProblemData problemData, int point) {
|
---|
132 | IntRange trainingPartition = problemData.TrainingPartition;
|
---|
133 | IntRange testPartition = problemData.TestPartition;
|
---|
134 | return (trainingPartition.Start <= point && point < trainingPartition.End)
|
---|
135 | && !(testPartition.Start <= point && point < testPartition.End);
|
---|
136 | }
|
---|
137 | protected bool PointInTest(IClassificationProblemData problemData, int point) {
|
---|
138 | IntRange testPartition = problemData.TestPartition;
|
---|
139 | return testPartition.Start <= point && point < testPartition.End;
|
---|
140 | }
|
---|
141 | protected bool AllPoints(IClassificationProblemData problemData, int point) {
|
---|
142 | return true;
|
---|
143 | }
|
---|
144 | #endregion
|
---|
145 | }
|
---|
146 | }
|
---|