1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Drawing;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 | using HeuristicLab.MainForm.WindowsForms;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Interfaces;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
33 | [View("Estimated Class Values")]
|
---|
34 | [Content(typeof(ClassificationEnsembleSolution))]
|
---|
35 | public partial class ClassificationEnsembleSolutionEstimatedClassValuesView :
|
---|
36 | ClassificationSolutionEstimatedClassValuesView {
|
---|
37 | private const string RowColumnName = "Row";
|
---|
38 | private const string TargetClassValuesColumnName = "Target Variable";
|
---|
39 | private const string EstimatedClassValuesColumnName = "Estimated Class Values";
|
---|
40 | private const string CorrectClassificationColumnName = "Correct Classification";
|
---|
41 | private const string ConfidenceColumnName = "Confidence";
|
---|
42 |
|
---|
43 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
44 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
45 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
46 |
|
---|
47 | public new ClassificationEnsembleSolution Content {
|
---|
48 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
49 | set { base.Content = value; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public ClassificationEnsembleSolutionEstimatedClassValuesView()
|
---|
53 | : base() {
|
---|
54 | InitializeComponent();
|
---|
55 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
56 | SamplesComboBox.SelectedIndex = 0;
|
---|
57 | matrixView.DataGridView.RowPrePaint += new DataGridViewRowPrePaintEventHandler(DataGridView_RowPrePaint);
|
---|
58 | }
|
---|
59 |
|
---|
60 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
61 | UpdateEstimatedValues();
|
---|
62 | }
|
---|
63 |
|
---|
64 | protected override void UpdateEstimatedValues() {
|
---|
65 | if (InvokeRequired) {
|
---|
66 | Invoke((Action)UpdateEstimatedValues);
|
---|
67 | return;
|
---|
68 | }
|
---|
69 | if (Content == null) {
|
---|
70 | matrixView.Content = null;
|
---|
71 | return;
|
---|
72 | }
|
---|
73 |
|
---|
74 | int[] indizes;
|
---|
75 | double[] estimatedClassValues;
|
---|
76 |
|
---|
77 | switch (SamplesComboBox.SelectedItem.ToString()) {
|
---|
78 | case SamplesComboBoxAllSamples: {
|
---|
79 | indizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray();
|
---|
80 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
81 | break;
|
---|
82 | }
|
---|
83 | case SamplesComboBoxTrainingSamples: {
|
---|
84 | indizes = Content.ProblemData.TrainingIndices.ToArray();
|
---|
85 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
86 | break;
|
---|
87 | }
|
---|
88 | case SamplesComboBoxTestSamples: {
|
---|
89 | indizes = Content.ProblemData.TestIndices.ToArray();
|
---|
90 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
91 | break;
|
---|
92 | }
|
---|
93 | default:
|
---|
94 | throw new ArgumentException();
|
---|
95 | }
|
---|
96 |
|
---|
97 | IEnumerable<IClassificationSolution> solutions = Content.ClassificationSolutions.CheckedItems;
|
---|
98 | int classValuesCount = Content.ProblemData.ClassValues.Count;
|
---|
99 | int solutionsCount = solutions.Count();
|
---|
100 | string[,] values = new string[indizes.Length, 5 + classValuesCount + solutionsCount];
|
---|
101 | double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
102 | List<List<double?>> estimatedValuesVector = GetEstimatedValues(SamplesComboBox.SelectedItem.ToString(), indizes,
|
---|
103 | solutions);
|
---|
104 |
|
---|
105 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
106 |
|
---|
107 | // needed to calculate average confidences of correct and wrong estimated classes
|
---|
108 | bool correctClassified;
|
---|
109 | double[] confidence = new double[2];
|
---|
110 | int[] classified = new int[2];
|
---|
111 | double curConfidence;
|
---|
112 |
|
---|
113 | double[] confidences = null;
|
---|
114 | if (SamplesComboBox.SelectedItem.ToString() == SamplesComboBoxAllSamples) {
|
---|
115 | confidences = weightCalc.GetConfidence(solutions, indizes, estimatedClassValues).ToArray();
|
---|
116 | }
|
---|
117 |
|
---|
118 | for (int i = 0; i < indizes.Length; i++) {
|
---|
119 | int row = indizes[i];
|
---|
120 | values[i, 0] = row.ToString();
|
---|
121 | values[i, 1] = target[i].ToString();
|
---|
122 | //display only indices and target values if no models are present
|
---|
123 | if (solutionsCount > 0) {
|
---|
124 | values[i, 2] = estimatedClassValues[i].ToString();
|
---|
125 | correctClassified = target[i].IsAlmost(estimatedClassValues[i]);
|
---|
126 | values[i, 3] = correctClassified.ToString();
|
---|
127 | if (SamplesComboBox.SelectedItem.ToString() == SamplesComboBoxAllSamples) {
|
---|
128 | curConfidence = confidences[i];
|
---|
129 | } else {
|
---|
130 | curConfidence = weightCalc.GetConfidence(GetRelevantSolutions(SamplesComboBox.SelectedItem.ToString(), solutions, row),
|
---|
131 | indizes[i], estimatedClassValues[i]);
|
---|
132 | }
|
---|
133 | if (correctClassified) {
|
---|
134 | confidence[0] += curConfidence;
|
---|
135 | classified[0]++;
|
---|
136 | } else {
|
---|
137 | confidence[1] += curConfidence;
|
---|
138 | classified[1]++;
|
---|
139 | }
|
---|
140 |
|
---|
141 | values[i, 4] = curConfidence.ToString();
|
---|
142 |
|
---|
143 | var groups =
|
---|
144 | estimatedValuesVector[i].GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
|
---|
145 | for (int classIndex = 0; classIndex < Content.ProblemData.ClassValues.Count; classIndex++) {
|
---|
146 | var group = groups.Where(g => g.Key == Content.ProblemData.ClassValues[classIndex]).SingleOrDefault();
|
---|
147 | if (group == null) values[i, 5 + classIndex] = 0.ToString();
|
---|
148 | else values[i, 5 + classIndex] = group.Count.ToString();
|
---|
149 | }
|
---|
150 | for (int modelIndex = 0; modelIndex < estimatedValuesVector[i].Count; modelIndex++) {
|
---|
151 | values[i, 5 + classValuesCount + modelIndex] = estimatedValuesVector[i][modelIndex] == null
|
---|
152 | ? string.Empty
|
---|
153 | : estimatedValuesVector[i][modelIndex].ToString();
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | CorrectClassifiedConfidence.Text = (confidence[0] / (double)classified[0]).ToString();
|
---|
159 | WrongClassifiedConfidence.Text = (confidence[1] / (double)classified[1]).ToString();
|
---|
160 |
|
---|
161 | StringMatrix matrix = new StringMatrix(values);
|
---|
162 | List<string> columnNames = new List<string>() { "Id", TargetClassValuesColumnName, EstimatedClassValuesColumnName, CorrectClassificationColumnName, ConfidenceColumnName };
|
---|
163 | columnNames.AddRange(Content.ProblemData.ClassNames);
|
---|
164 | columnNames.AddRange(Content.ClassificationSolutions.CheckedItems.Select(s => s.Model.Name));//.Model.Models.Select(m => m.Name));
|
---|
165 | matrix.ColumnNames = columnNames;
|
---|
166 | matrix.SortableView = true;
|
---|
167 | matrixView.Content = matrix;
|
---|
168 | }
|
---|
169 |
|
---|
170 | protected IEnumerable<IClassificationSolution> GetRelevantSolutions(string samplesSelection, IEnumerable<IClassificationSolution> solutions, int curRow) {
|
---|
171 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
172 | return solutions;
|
---|
173 | else if (samplesSelection == SamplesComboBoxTrainingSamples)
|
---|
174 | return solutions.Where(s => s.ProblemData.IsTrainingSample(curRow));
|
---|
175 | else if (samplesSelection == SamplesComboBoxTestSamples)
|
---|
176 | return solutions.Where(s => s.ProblemData.IsTestSample(curRow));
|
---|
177 | else
|
---|
178 | return new List<IClassificationSolution>();
|
---|
179 | }
|
---|
180 |
|
---|
181 | private IEnumerable<int> FindAllIndices(List<double?> list, double value) {
|
---|
182 | List<int> indices = new List<int>();
|
---|
183 | for (int i = 0; i < list.Count; i++) {
|
---|
184 | if (list[i].Equals(value))
|
---|
185 | indices.Add(i);
|
---|
186 | }
|
---|
187 | return indices;
|
---|
188 | }
|
---|
189 |
|
---|
190 | private List<List<double?>> GetEstimatedValues(string samplesSelection, int[] rows, IEnumerable<IClassificationSolution> solutions) {
|
---|
191 | List<List<double?>> values = new List<List<double?>>();
|
---|
192 | int solutionIndex = 0;
|
---|
193 | foreach (var solution in solutions) {
|
---|
194 | double[] estimation = solution.GetEstimatedClassValues(rows).ToArray();
|
---|
195 | for (int i = 0; i < rows.Length; i++) {
|
---|
196 | var row = rows[i];
|
---|
197 | if (solutionIndex == 0) values.Add(new List<double?>());
|
---|
198 |
|
---|
199 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
200 | values[i].Add(estimation[i]);
|
---|
201 | else if (samplesSelection == SamplesComboBoxTrainingSamples && solution.ProblemData.IsTrainingSample(row))
|
---|
202 | values[i].Add(estimation[i]);
|
---|
203 | else if (samplesSelection == SamplesComboBoxTestSamples && solution.ProblemData.IsTestSample(row))
|
---|
204 | values[i].Add(estimation[i]);
|
---|
205 | else
|
---|
206 | values[i].Add(null);
|
---|
207 | }
|
---|
208 | solutionIndex++;
|
---|
209 | }
|
---|
210 | return values;
|
---|
211 | }
|
---|
212 |
|
---|
213 | private void DataGridView_RowPrePaint(object sender, DataGridViewRowPrePaintEventArgs e) {
|
---|
214 | if (InvokeRequired) {
|
---|
215 | Invoke(new EventHandler<DataGridViewRowPrePaintEventArgs>(DataGridView_RowPrePaint), sender, e);
|
---|
216 | return;
|
---|
217 | }
|
---|
218 | var cellValue = matrixView.DataGridView[3, e.RowIndex].Value.ToString();
|
---|
219 | if (string.IsNullOrEmpty(cellValue)) return;
|
---|
220 | bool correctClassified = bool.Parse(cellValue);
|
---|
221 | matrixView.DataGridView.Rows[e.RowIndex].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red;
|
---|
222 | }
|
---|
223 | }
|
---|
224 | }
|
---|