[5678] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5678] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8811] | 21 |
|
---|
[5678] | 22 | using System;
|
---|
[6672] | 23 | using System.Collections.Generic;
|
---|
[6680] | 24 | using System.Drawing;
|
---|
[5678] | 25 | using System.Linq;
|
---|
| 26 | using System.Windows.Forms;
|
---|
[7022] | 27 | using HeuristicLab.Common;
|
---|
[5678] | 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.MainForm;
|
---|
| 30 | using HeuristicLab.MainForm.WindowsForms;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
[5975] | 33 | [View("Estimated Class Values")]
|
---|
[6672] | 34 | [Content(typeof(ClassificationEnsembleSolution))]
|
---|
| 35 | public partial class ClassificationEnsembleSolutionEstimatedClassValuesView :
|
---|
| 36 | ClassificationSolutionEstimatedClassValuesView {
|
---|
| 37 | private const string RowColumnName = "Row";
|
---|
[6680] | 38 | private const string TargetClassValuesColumnName = "Target Variable";
|
---|
| 39 | private const string EstimatedClassValuesColumnName = "Estimated Class Values";
|
---|
| 40 | private const string CorrectClassificationColumnName = "Correct Classification";
|
---|
[6672] | 41 | private const string ConfidenceColumnName = "Confidence";
|
---|
[5678] | 42 |
|
---|
[6672] | 43 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
| 44 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
| 45 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
| 46 |
|
---|
| 47 | public new ClassificationEnsembleSolution Content {
|
---|
| 48 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
[6642] | 49 | set { base.Content = value; }
|
---|
[5678] | 50 | }
|
---|
| 51 |
|
---|
[6672] | 52 | public ClassificationEnsembleSolutionEstimatedClassValuesView()
|
---|
[5678] | 53 | : base() {
|
---|
| 54 | InitializeComponent();
|
---|
[6672] | 55 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
| 56 | SamplesComboBox.SelectedIndex = 0;
|
---|
[6680] | 57 | matrixView.DataGridView.RowPrePaint += new DataGridViewRowPrePaintEventHandler(DataGridView_RowPrePaint);
|
---|
[5678] | 58 | }
|
---|
| 59 |
|
---|
[6672] | 60 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 61 | UpdateEstimatedValues();
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[6642] | 64 | protected override void UpdateEstimatedValues() {
|
---|
[6672] | 65 | if (InvokeRequired) {
|
---|
| 66 | Invoke((Action)UpdateEstimatedValues);
|
---|
| 67 | return;
|
---|
| 68 | }
|
---|
| 69 | if (Content == null) {
|
---|
| 70 | matrixView.Content = null;
|
---|
| 71 | return;
|
---|
| 72 | }
|
---|
[5678] | 73 |
|
---|
[6672] | 74 | int[] indizes;
|
---|
| 75 | double[] estimatedClassValues;
|
---|
| 76 |
|
---|
| 77 | switch (SamplesComboBox.SelectedItem.ToString()) {
|
---|
| 78 | case SamplesComboBoxAllSamples: {
|
---|
| 79 | indizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray();
|
---|
| 80 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
| 81 | break;
|
---|
[5678] | 82 | }
|
---|
[6672] | 83 | case SamplesComboBoxTrainingSamples: {
|
---|
[8508] | 84 | indizes = Content.ProblemData.TrainingIndices.ToArray();
|
---|
[6672] | 85 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
| 86 | break;
|
---|
| 87 | }
|
---|
| 88 | case SamplesComboBoxTestSamples: {
|
---|
[8508] | 89 | indizes = Content.ProblemData.TestIndices.ToArray();
|
---|
[6672] | 90 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
| 91 | break;
|
---|
| 92 | }
|
---|
| 93 | default:
|
---|
| 94 | throw new ArgumentException();
|
---|
| 95 | }
|
---|
[5678] | 96 |
|
---|
[7562] | 97 | IEnumerable<IClassificationSolution> solutions = Content.ClassificationSolutions.CheckedItems;
|
---|
[8811] | 98 | int classValuesCount = Content.ProblemData.Classes;
|
---|
[7562] | 99 | int solutionsCount = solutions.Count();
|
---|
[7022] | 100 | string[,] values = new string[indizes.Length, 5 + classValuesCount + solutionsCount];
|
---|
[6740] | 101 | double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
[6672] | 102 | List<List<double?>> estimatedValuesVector = GetEstimatedValues(SamplesComboBox.SelectedItem.ToString(), indizes,
|
---|
[7562] | 103 | solutions);
|
---|
[6672] | 104 |
|
---|
[7562] | 105 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
| 106 |
|
---|
[8101] | 107 | // needed to calculate average confidences of correct and wrong estimated classes
|
---|
| 108 | bool correctClassified;
|
---|
| 109 | double[] confidence = new double[2];
|
---|
| 110 | int[] classified = new int[2];
|
---|
| 111 | double curConfidence;
|
---|
| 112 |
|
---|
[8297] | 113 | double[] confidences = null;
|
---|
[8814] | 114 |
|
---|
| 115 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxAllSamples)) {
|
---|
| 116 | confidences = weightCalc.GetConfidence(solutions,
|
---|
| 117 | indizes,
|
---|
| 118 | estimatedClassValues,
|
---|
| 119 | weightCalc.GetAllClassDelegate()).ToArray();
|
---|
| 120 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTrainingSamples)) {
|
---|
| 121 | confidences = weightCalc.GetConfidence(solutions,
|
---|
| 122 | indizes,
|
---|
| 123 | estimatedClassValues,
|
---|
| 124 | weightCalc.GetTrainingClassDelegate()).ToArray();
|
---|
| 125 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTestSamples)) {
|
---|
| 126 | confidences = weightCalc.GetConfidence(solutions,
|
---|
| 127 | indizes,
|
---|
| 128 | estimatedClassValues,
|
---|
| 129 | weightCalc.GetTestClassDelegate()).ToArray();
|
---|
[8297] | 130 | }
|
---|
| 131 |
|
---|
[6672] | 132 | for (int i = 0; i < indizes.Length; i++) {
|
---|
| 133 | int row = indizes[i];
|
---|
| 134 | values[i, 0] = row.ToString();
|
---|
[8863] | 135 | values[i, 1] = target[row].ToString();
|
---|
[6982] | 136 | //display only indices and target values if no models are present
|
---|
[7022] | 137 | if (solutionsCount > 0) {
|
---|
| 138 | values[i, 2] = estimatedClassValues[i].ToString();
|
---|
[8863] | 139 | correctClassified = target[row].IsAlmost(estimatedClassValues[i]);
|
---|
[8101] | 140 | values[i, 3] = correctClassified.ToString();
|
---|
[8814] | 141 | curConfidence = confidences[i];
|
---|
[8101] | 142 | if (correctClassified) {
|
---|
| 143 | confidence[0] += curConfidence;
|
---|
| 144 | classified[0]++;
|
---|
| 145 | } else {
|
---|
| 146 | confidence[1] += curConfidence;
|
---|
| 147 | classified[1]++;
|
---|
| 148 | }
|
---|
[7464] | 149 |
|
---|
[8101] | 150 | values[i, 4] = curConfidence.ToString();
|
---|
| 151 |
|
---|
[7022] | 152 | var groups =
|
---|
| 153 | estimatedValuesVector[i].GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
|
---|
[8811] | 154 |
|
---|
| 155 | for (int classIndex = 0; classIndex < Content.ProblemData.Classes; classIndex++) {
|
---|
| 156 | var group = groups.Where(g => g.Key == Content.ProblemData.ClassValues.ElementAt(classIndex)).SingleOrDefault();
|
---|
[7022] | 157 | if (group == null) values[i, 5 + classIndex] = 0.ToString();
|
---|
| 158 | else values[i, 5 + classIndex] = group.Count.ToString();
|
---|
| 159 | }
|
---|
| 160 | for (int modelIndex = 0; modelIndex < estimatedValuesVector[i].Count; modelIndex++) {
|
---|
| 161 | values[i, 5 + classValuesCount + modelIndex] = estimatedValuesVector[i][modelIndex] == null
|
---|
| 162 | ? string.Empty
|
---|
| 163 | : estimatedValuesVector[i][modelIndex].ToString();
|
---|
| 164 | }
|
---|
[5678] | 165 | }
|
---|
| 166 | }
|
---|
[6672] | 167 |
|
---|
[8101] | 168 | CorrectClassifiedConfidence.Text = (confidence[0] / (double)classified[0]).ToString();
|
---|
| 169 | WrongClassifiedConfidence.Text = (confidence[1] / (double)classified[1]).ToString();
|
---|
| 170 |
|
---|
[6672] | 171 | StringMatrix matrix = new StringMatrix(values);
|
---|
[6680] | 172 | List<string> columnNames = new List<string>() { "Id", TargetClassValuesColumnName, EstimatedClassValuesColumnName, CorrectClassificationColumnName, ConfidenceColumnName };
|
---|
[6672] | 173 | columnNames.AddRange(Content.ProblemData.ClassNames);
|
---|
[7562] | 174 | columnNames.AddRange(Content.ClassificationSolutions.CheckedItems.Select(s => s.Model.Name));//.Model.Models.Select(m => m.Name));
|
---|
[6672] | 175 | matrix.ColumnNames = columnNames;
|
---|
| 176 | matrix.SortableView = true;
|
---|
| 177 | matrixView.Content = matrix;
|
---|
[5678] | 178 | }
|
---|
[6672] | 179 |
|
---|
| 180 | private List<List<double?>> GetEstimatedValues(string samplesSelection, int[] rows, IEnumerable<IClassificationSolution> solutions) {
|
---|
| 181 | List<List<double?>> values = new List<List<double?>>();
|
---|
| 182 | int solutionIndex = 0;
|
---|
| 183 | foreach (var solution in solutions) {
|
---|
| 184 | double[] estimation = solution.GetEstimatedClassValues(rows).ToArray();
|
---|
| 185 | for (int i = 0; i < rows.Length; i++) {
|
---|
| 186 | var row = rows[i];
|
---|
| 187 | if (solutionIndex == 0) values.Add(new List<double?>());
|
---|
| 188 |
|
---|
| 189 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
| 190 | values[i].Add(estimation[i]);
|
---|
| 191 | else if (samplesSelection == SamplesComboBoxTrainingSamples && solution.ProblemData.IsTrainingSample(row))
|
---|
| 192 | values[i].Add(estimation[i]);
|
---|
| 193 | else if (samplesSelection == SamplesComboBoxTestSamples && solution.ProblemData.IsTestSample(row))
|
---|
| 194 | values[i].Add(estimation[i]);
|
---|
| 195 | else
|
---|
| 196 | values[i].Add(null);
|
---|
| 197 | }
|
---|
| 198 | solutionIndex++;
|
---|
| 199 | }
|
---|
| 200 | return values;
|
---|
| 201 | }
|
---|
| 202 |
|
---|
[6680] | 203 | private void DataGridView_RowPrePaint(object sender, DataGridViewRowPrePaintEventArgs e) {
|
---|
| 204 | if (InvokeRequired) {
|
---|
| 205 | Invoke(new EventHandler<DataGridViewRowPrePaintEventArgs>(DataGridView_RowPrePaint), sender, e);
|
---|
| 206 | return;
|
---|
| 207 | }
|
---|
[6982] | 208 | var cellValue = matrixView.DataGridView[3, e.RowIndex].Value.ToString();
|
---|
| 209 | if (string.IsNullOrEmpty(cellValue)) return;
|
---|
| 210 | bool correctClassified = bool.Parse(cellValue);
|
---|
[6680] | 211 | matrixView.DataGridView.Rows[e.RowIndex].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red;
|
---|
| 212 | }
|
---|
[5678] | 213 | }
|
---|
| 214 | }
|
---|