1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Interfaces;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
32 | [View("Confidence Accuracy Dependence")]
|
---|
33 | [Content(typeof(IClassificationEnsembleSolution))]
|
---|
34 | public partial class ClassificationEnsembleSolutionConfidenceAccuracyDependence : DataAnalysisSolutionEvaluationView {
|
---|
35 | private const string CONFIDENCE = "Confidence";
|
---|
36 | private const string ACCURACY = "Accuracy";
|
---|
37 | private const string COVEREDPERCENTAGE = "Covered percentage";
|
---|
38 |
|
---|
39 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
40 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
41 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
42 |
|
---|
43 | // zero is also a point
|
---|
44 | private const int maxPoints = 101;
|
---|
45 |
|
---|
46 | public new ClassificationEnsembleSolution Content {
|
---|
47 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
48 | set { base.Content = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public ClassificationEnsembleSolutionConfidenceAccuracyDependence()
|
---|
52 | : base() {
|
---|
53 | InitializeComponent();
|
---|
54 |
|
---|
55 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
56 | SamplesComboBox.SelectedIndex = 0;
|
---|
57 | //configure axis
|
---|
58 | this.chart.CustomizeAllChartAreas();
|
---|
59 | this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
60 | this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
61 | this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
|
---|
62 | this.chart.ChartAreas[0].AxisX.Minimum = 0;
|
---|
63 | this.chart.ChartAreas[0].AxisX.Maximum = 1;
|
---|
64 |
|
---|
65 | this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
66 | this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
67 | this.chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
|
---|
68 | this.chart.ChartAreas[0].AxisY.Minimum = 0;
|
---|
69 | this.chart.ChartAreas[0].AxisY.Maximum = 1;
|
---|
70 | }
|
---|
71 |
|
---|
72 | private void RedrawChart() {
|
---|
73 | this.chart.Series.Clear();
|
---|
74 | if (Content != null) {
|
---|
75 |
|
---|
76 | Dictionary<string, double[]> points = new Dictionary<string, double[]>();
|
---|
77 | points.Add(CONFIDENCE, new double[maxPoints]);
|
---|
78 | points.Add(ACCURACY, new double[maxPoints]);
|
---|
79 | points.Add(COVEREDPERCENTAGE, new double[maxPoints]);
|
---|
80 |
|
---|
81 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
82 | var solutions = Content.ClassificationSolutions;
|
---|
83 | double[] estimatedClassValues;
|
---|
84 | double[] classValues;
|
---|
85 | OnlineAccuracyCalculator accuracyCalc = new OnlineAccuracyCalculator();
|
---|
86 |
|
---|
87 | int rows;
|
---|
88 | double[] confidences;
|
---|
89 |
|
---|
90 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxAllSamples)) {
|
---|
91 | rows = Content.ProblemData.Dataset.Rows;
|
---|
92 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
93 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
94 | confidences = weightCalc.GetConfidence(solutions, Enumerable.Range(0, rows), estimatedClassValues).ToArray();
|
---|
95 | } else {
|
---|
96 | IntRange range;
|
---|
97 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTrainingSamples)) {
|
---|
98 | range = Content.ProblemData.TrainingPartition;
|
---|
99 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
100 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTestSamples)) {
|
---|
101 | range = Content.ProblemData.TestPartition;
|
---|
102 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
103 | } else {
|
---|
104 | return;
|
---|
105 | }
|
---|
106 | rows = range.End - range.Start;
|
---|
107 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable)
|
---|
108 | .Skip(range.Start).Take(range.End - range.Start).ToArray();
|
---|
109 | confidences = new double[rows];
|
---|
110 | int index;
|
---|
111 | for (int i = 0; i < rows; i++) {
|
---|
112 | index = range.Start + i;
|
---|
113 | confidences[i] = weightCalc.GetConfidence(GetRelevantSolutions(SamplesComboBox.SelectedItem.ToString(), solutions, index),
|
---|
114 | index, estimatedClassValues[i]);
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | for (int i = 0; i < maxPoints; i++) {
|
---|
119 | double confidenceValue = (1.0 / (maxPoints - 1)) * i;
|
---|
120 | int notCovered = 0;
|
---|
121 |
|
---|
122 | for (int j = 0; j < rows; j++) {
|
---|
123 | if (confidences[j] >= confidenceValue) {
|
---|
124 | accuracyCalc.Add(classValues[j], estimatedClassValues[j]);
|
---|
125 | } else {
|
---|
126 | notCovered++;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | points[CONFIDENCE][i] = confidenceValue;
|
---|
131 | points[ACCURACY][i] = accuracyCalc.Accuracy;
|
---|
132 | points[COVEREDPERCENTAGE][i] = (double)notCovered / (double)rows;
|
---|
133 | accuracyCalc.Reset();
|
---|
134 | }
|
---|
135 |
|
---|
136 | this.chart.Series.Add(CONFIDENCE);
|
---|
137 | this.chart.Series[CONFIDENCE].LegendText = CONFIDENCE;
|
---|
138 | this.chart.Series[CONFIDENCE].ChartType = SeriesChartType.FastLine;
|
---|
139 | this.chart.Series[CONFIDENCE].Points.DataBindXY(points[CONFIDENCE], points[CONFIDENCE]);
|
---|
140 |
|
---|
141 | this.chart.Series.Add(ACCURACY);
|
---|
142 | this.chart.Series[ACCURACY].LegendText = ACCURACY;
|
---|
143 | this.chart.Series[ACCURACY].ChartType = SeriesChartType.FastLine;
|
---|
144 | this.chart.Series[ACCURACY].Points.DataBindXY(points[CONFIDENCE], points[ACCURACY]);
|
---|
145 |
|
---|
146 | this.chart.Series.Add(COVEREDPERCENTAGE);
|
---|
147 | this.chart.Series[COVEREDPERCENTAGE].LegendText = COVEREDPERCENTAGE;
|
---|
148 | this.chart.Series[COVEREDPERCENTAGE].ChartType = SeriesChartType.FastLine;
|
---|
149 | this.chart.Series[COVEREDPERCENTAGE].Points.DataBindXY(points[CONFIDENCE], points[COVEREDPERCENTAGE]);
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | protected IEnumerable<IClassificationSolution> GetRelevantSolutions(string samplesSelection, IEnumerable<IClassificationSolution> solutions, int curRow) {
|
---|
154 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
155 | return solutions;
|
---|
156 | else if (samplesSelection == SamplesComboBoxTrainingSamples)
|
---|
157 | return solutions.Where(s => s.ProblemData.IsTrainingSample(curRow));
|
---|
158 | else if (samplesSelection == SamplesComboBoxTestSamples)
|
---|
159 | return solutions.Where(s => s.ProblemData.IsTestSample(curRow));
|
---|
160 | else
|
---|
161 | return new List<IClassificationSolution>();
|
---|
162 | }
|
---|
163 |
|
---|
164 | #region events
|
---|
165 | protected override void RegisterContentEvents() {
|
---|
166 | base.RegisterContentEvents();
|
---|
167 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
168 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
169 | }
|
---|
170 | protected override void DeregisterContentEvents() {
|
---|
171 | base.DeregisterContentEvents();
|
---|
172 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
173 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
174 | }
|
---|
175 |
|
---|
176 | protected override void OnContentChanged() {
|
---|
177 | base.OnContentChanged();
|
---|
178 | RedrawChart();
|
---|
179 | }
|
---|
180 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
181 | RedrawChart();
|
---|
182 | }
|
---|
183 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
184 | RedrawChart();
|
---|
185 | }
|
---|
186 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
187 | RedrawChart();
|
---|
188 | }
|
---|
189 | #endregion
|
---|
190 | }
|
---|
191 | }
|
---|