1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Windows.Forms;
|
---|
27 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
31 | [View("Accuracy Covered Dependence")]
|
---|
32 | [Content(typeof(IClassificationEnsembleSolution))]
|
---|
33 | public partial class ClassificationEnsembleSolutionAccuracyToCoveredSamples : DataAnalysisSolutionEvaluationView {
|
---|
34 | private const string ACCURACYCOVERED = "Accuracy to Covered percentage";
|
---|
35 | private const string AREA = "Area";
|
---|
36 |
|
---|
37 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
38 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
39 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
40 |
|
---|
41 | private const int maxPoints = 101;
|
---|
42 |
|
---|
43 | public new ClassificationEnsembleSolution Content {
|
---|
44 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
45 | set { base.Content = value; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public ClassificationEnsembleSolutionAccuracyToCoveredSamples()
|
---|
49 | : base() {
|
---|
50 | InitializeComponent();
|
---|
51 |
|
---|
52 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
53 | SamplesComboBox.SelectedIndex = 0;
|
---|
54 | //configure axis
|
---|
55 | this.chart.CustomizeAllChartAreas();
|
---|
56 | this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
57 | this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
58 | this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
|
---|
59 | this.chart.ChartAreas[0].AxisX.Minimum = 0;
|
---|
60 | this.chart.ChartAreas[0].AxisX.Maximum = 1;
|
---|
61 | this.chart.ChartAreas[0].AxisX.Title = "Covered Samples in %";
|
---|
62 |
|
---|
63 | this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
64 | this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
65 | this.chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
|
---|
66 | this.chart.ChartAreas[0].AxisY.Minimum = 0;
|
---|
67 | this.chart.ChartAreas[0].AxisY.Maximum = 1;
|
---|
68 | this.chart.ChartAreas[0].AxisY.Title = "Accuracy";
|
---|
69 |
|
---|
70 | AUCLabel.Parent = chart;
|
---|
71 | AUCLabel.BackColor = Color.Transparent;
|
---|
72 | }
|
---|
73 |
|
---|
74 | private void RedrawChart() {
|
---|
75 | this.chart.Series.Clear();
|
---|
76 | if (Content != null) {
|
---|
77 |
|
---|
78 | double[] accuracy = new double[maxPoints + 1];
|
---|
79 | double[] covered = new double[maxPoints + 1];
|
---|
80 |
|
---|
81 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
82 | var solutions = Content.ClassificationSolutions;
|
---|
83 | double[] estimatedClassValues = null;
|
---|
84 | double[] classValues;
|
---|
85 | OnlineAccuracyCalculator accuracyCalc = new OnlineAccuracyCalculator();
|
---|
86 |
|
---|
87 | int rows = 0;
|
---|
88 | double[] confidences = null;
|
---|
89 |
|
---|
90 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
91 |
|
---|
92 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxAllSamples)) {
|
---|
93 | rows = Content.ProblemData.Dataset.Rows;
|
---|
94 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
95 | confidences = weightCalc.GetConfidence(solutions,
|
---|
96 | Enumerable.Range(0, Content.ProblemData.Dataset.Rows),
|
---|
97 | estimatedClassValues,
|
---|
98 | weightCalc.GetAllClassDelegate()).ToArray();
|
---|
99 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTrainingSamples)) {
|
---|
100 | rows = Content.ProblemData.TrainingIndices.Count();
|
---|
101 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
102 | confidences = weightCalc.GetConfidence(solutions,
|
---|
103 | Content.ProblemData.TrainingIndices,
|
---|
104 | estimatedClassValues,
|
---|
105 | weightCalc.GetTrainingClassDelegate()).ToArray();
|
---|
106 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTestSamples)) {
|
---|
107 | rows = Content.ProblemData.TestIndices.Count();
|
---|
108 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
109 | confidences = weightCalc.GetConfidence(solutions,
|
---|
110 | Content.ProblemData.TestIndices,
|
---|
111 | estimatedClassValues,
|
---|
112 | weightCalc.GetTestClassDelegate()).ToArray();
|
---|
113 | }
|
---|
114 |
|
---|
115 | for (int i = 0; i < maxPoints; i++) {
|
---|
116 | double confidenceValue = (1.0 / (maxPoints - 1)) * i;
|
---|
117 | int notCovered = 0;
|
---|
118 |
|
---|
119 | for (int j = 0; j < rows; j++) {
|
---|
120 | if (confidences[j] >= confidenceValue) {
|
---|
121 | accuracyCalc.Add(classValues[j], estimatedClassValues[j]);
|
---|
122 | } else {
|
---|
123 | notCovered++;
|
---|
124 | }
|
---|
125 | }
|
---|
126 |
|
---|
127 | accuracy[i + 1] = accuracyCalc.Accuracy;
|
---|
128 | if (rows > 0) {
|
---|
129 | covered[i] = 1.0 - (double)notCovered / (double)rows;
|
---|
130 | }
|
---|
131 | accuracyCalc.Reset();
|
---|
132 | }
|
---|
133 |
|
---|
134 | accuracy[0] = accuracy[1];
|
---|
135 | covered[maxPoints] = 0.0;
|
---|
136 |
|
---|
137 | accuracy = accuracy.Reverse().ToArray();
|
---|
138 | covered = covered.Reverse().ToArray();
|
---|
139 |
|
---|
140 | Series area = this.chart.Series.Add(AREA);
|
---|
141 | area.ChartType = SeriesChartType.Area;
|
---|
142 | area.Color = Color.LightBlue;
|
---|
143 | IEnumerable<IEnumerable<double>> areaPoints = CalculateAreaPoints(covered, accuracy);
|
---|
144 | area.Points.DataBindXY(areaPoints.ElementAt(0), areaPoints.ElementAt(1));
|
---|
145 |
|
---|
146 | Series series = this.chart.Series.Add(ACCURACYCOVERED);
|
---|
147 | series.Color = Color.Red;
|
---|
148 | series.ChartType = SeriesChartType.FastPoint;
|
---|
149 | series.MarkerStyle = MarkerStyle.Diamond;
|
---|
150 | series.MarkerSize = 5;
|
---|
151 | series.Points.DataBindXY(covered, accuracy);
|
---|
152 |
|
---|
153 | double auc = CalculateAreaUnderCurve(series);
|
---|
154 | area.LegendToolTip = "AUC: " + auc;
|
---|
155 |
|
---|
156 | AUCLabel.Text = "AUC: " + auc;
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | private IEnumerable<IEnumerable<double>> CalculateAreaPoints(double[] covered, double[] accuracy) {
|
---|
161 | List<double> newCovered = new List<double>();
|
---|
162 | List<double> worseAccuracy = new List<double>();
|
---|
163 | newCovered.Add(covered[0]);
|
---|
164 | worseAccuracy.Add(accuracy[0]);
|
---|
165 | for (int i = 1; i < covered.Length; i++) {
|
---|
166 | if (accuracy[i] > accuracy[i - 1]) {
|
---|
167 | worseAccuracy.Add(accuracy[i - 1]);
|
---|
168 | newCovered.Add(covered[i] - Double.Epsilon);
|
---|
169 | } else {
|
---|
170 | worseAccuracy.Add(accuracy[i]);
|
---|
171 | newCovered.Add(covered[i - 1] + Double.Epsilon);
|
---|
172 | }
|
---|
173 | worseAccuracy.Add(accuracy[i]);
|
---|
174 | newCovered.Add(covered[i]);
|
---|
175 | }
|
---|
176 | return new List<IEnumerable<double>>() { newCovered, worseAccuracy };
|
---|
177 | }
|
---|
178 |
|
---|
179 | private double CalculateAreaUnderCurve(Series series) {
|
---|
180 | if (series.Points.Count < 1) throw new ArgumentException("Could not calculate area under curve if less than 1 data points were given.");
|
---|
181 |
|
---|
182 | double auc = 0.0;
|
---|
183 | for (int i = 1; i < series.Points.Count; i++) {
|
---|
184 | double width = series.Points[i].XValue - series.Points[i - 1].XValue;
|
---|
185 | double y1 = series.Points[i - 1].YValues[0];
|
---|
186 | double y2 = series.Points[i].YValues[0];
|
---|
187 |
|
---|
188 | auc += (y1 + y2) * width / 2;
|
---|
189 | }
|
---|
190 |
|
---|
191 | return auc;
|
---|
192 | }
|
---|
193 |
|
---|
194 | #region events
|
---|
195 | protected override void RegisterContentEvents() {
|
---|
196 | base.RegisterContentEvents();
|
---|
197 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
198 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
199 | }
|
---|
200 | protected override void DeregisterContentEvents() {
|
---|
201 | base.DeregisterContentEvents();
|
---|
202 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
203 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
204 | }
|
---|
205 |
|
---|
206 | protected override void OnContentChanged() {
|
---|
207 | base.OnContentChanged();
|
---|
208 | RedrawChart();
|
---|
209 | }
|
---|
210 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
211 | RedrawChart();
|
---|
212 | }
|
---|
213 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
214 | RedrawChart();
|
---|
215 | }
|
---|
216 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
217 | RedrawChart();
|
---|
218 | }
|
---|
219 | #endregion
|
---|
220 | }
|
---|
221 | }
|
---|