1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Analysis;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using System;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
33 | [Item("CMAAnalyzer", "Analyzes the development of strategy parameters and visualizes the performance of CMA-ES.")]
|
---|
34 | [StorableClass]
|
---|
35 | public sealed class CMAAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
36 |
|
---|
37 | public bool EnabledByDefault {
|
---|
38 | get { return false; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | #region Parameter Properties
|
---|
42 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
43 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | public ILookupParameter<RealVector> MeanParameter {
|
---|
47 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
51 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
52 | }
|
---|
53 | #endregion
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | private CMAAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
57 | private CMAAnalyzer(CMAAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public CMAAnalyzer()
|
---|
59 | : base() {
|
---|
60 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The CMA strategy parameters to be analyzed."));
|
---|
61 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The mean real vector that is being optimized."));
|
---|
62 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
66 | return new CMAAnalyzer(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public override IOperation Apply() {
|
---|
70 | var sp = StrategyParametersParameter.ActualValue;
|
---|
71 | var vector = MeanParameter.ActualValue;
|
---|
72 | var results = ResultsParameter.ActualValue;
|
---|
73 |
|
---|
74 | DataTable axisRatio;
|
---|
75 | if (results.ContainsKey("AxisRatio")) {
|
---|
76 | axisRatio = (DataTable)results["AxisRatio"].Value;
|
---|
77 | } else {
|
---|
78 | axisRatio = new DataTable("AxisRatio");
|
---|
79 | axisRatio.Rows.Add(new DataRow("AxisRatio"));
|
---|
80 | axisRatio.VisualProperties.YAxisLogScale = true;
|
---|
81 | results.Add(new Result("AxisRatio", axisRatio));
|
---|
82 | }
|
---|
83 | axisRatio.Rows["AxisRatio"].Values.Add(sp.AxisRatio.Value);
|
---|
84 |
|
---|
85 | DataTable sigma;
|
---|
86 | if (results.ContainsKey("Sigma")) {
|
---|
87 | sigma = (DataTable)results["Sigma"].Value;
|
---|
88 | } else {
|
---|
89 | sigma = new DataTable("Sigma");
|
---|
90 | sigma.VisualProperties.YAxisLogScale = true;
|
---|
91 | sigma.Rows.Add(new DataRow("Sigma"));
|
---|
92 | results.Add(new Result("Sigma", sigma));
|
---|
93 | }
|
---|
94 | sigma.Rows["Sigma"].Values.Add(sp.Sigma.Value);
|
---|
95 |
|
---|
96 | DataTable scaling;
|
---|
97 | if (results.ContainsKey("Scaling")) {
|
---|
98 | scaling = (DataTable)results["Scaling"].Value;
|
---|
99 | } else {
|
---|
100 | scaling = new DataTable("Scaling");
|
---|
101 | scaling.VisualProperties.YAxisLogScale = true;
|
---|
102 | for (int i = 0; i < sp.C.Rows; i++)
|
---|
103 | scaling.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
104 | results.Add(new Result("Scaling", scaling));
|
---|
105 | }
|
---|
106 | for (int i = 0; i < sp.C.Rows; i++)
|
---|
107 | scaling.Rows["Axis" + i.ToString()].Values.Add(sp.D[i]);
|
---|
108 |
|
---|
109 | DataTable realVector;
|
---|
110 | if (results.ContainsKey("RealVector")) {
|
---|
111 | realVector = (DataTable)results["RealVector"].Value;
|
---|
112 | } else {
|
---|
113 | realVector = new DataTable("RealVector");
|
---|
114 | for (int i = 0; i < vector.Length; i++)
|
---|
115 | realVector.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
116 | results.Add(new Result("RealVector", realVector));
|
---|
117 | }
|
---|
118 | for (int i = 0; i < vector.Length; i++)
|
---|
119 | realVector.Rows["Axis" + i.ToString()].Values.Add(vector[i]);
|
---|
120 |
|
---|
121 | DataTable stdDevs;
|
---|
122 | if (results.ContainsKey("StandardDeviations")) {
|
---|
123 | stdDevs = (DataTable)results["StandardDeviations"].Value;
|
---|
124 | } else {
|
---|
125 | stdDevs = new DataTable("StandardDeviations");
|
---|
126 | stdDevs.VisualProperties.YAxisLogScale = true;
|
---|
127 | for (int i = 0; i < vector.Length; i++)
|
---|
128 | stdDevs.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
129 | results.Add(new Result("StandardDeviations", stdDevs));
|
---|
130 | }
|
---|
131 | for (int i = 0; i < vector.Length; i++)
|
---|
132 | stdDevs.Rows["Axis" + i.ToString()].Values.Add(Math.Sqrt(sp.C[i, i]));
|
---|
133 |
|
---|
134 | return base.Apply();
|
---|
135 | }
|
---|
136 | }
|
---|
137 | } |
---|