1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.Scheduling.CFSAP {
|
---|
28 | public static class OptimalAssignment {
|
---|
29 |
|
---|
30 | public static int[] MakeAssignment(Permutation order, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes, out int T) {
|
---|
31 | var N = order.Length;
|
---|
32 |
|
---|
33 | int[,,] weights = new int[2, 2 * N, 2 * N];
|
---|
34 | int[,] graph = new int[2, N];
|
---|
35 | int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation
|
---|
36 | int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation
|
---|
37 |
|
---|
38 | //Calculate weights in the graph
|
---|
39 | for (int S = 0; S < N; S++) { //Starting point of the arc
|
---|
40 | for (int sM = 0; sM < 2; sM++) { //Starting point machine
|
---|
41 | int eM = sM == 0 ? 1 : 0;
|
---|
42 | weights[sM, S, S + 1] = 0;
|
---|
43 |
|
---|
44 | for (int E = S + 2; E < S + N; E++)
|
---|
45 | weights[sM, S, E] =
|
---|
46 | weights[sM, S, E - 1] +
|
---|
47 | processingTimes[eM, order[(E - 1) % N]] +
|
---|
48 | setupTimes[eM][order[(E - 1) % N], order[E % N]];
|
---|
49 |
|
---|
50 | for (int E = S + 1; E < S + N; E++)
|
---|
51 | weights[sM, S, E] += (
|
---|
52 | processingTimes[sM, order[S % N]] +
|
---|
53 | setupTimes[sM][order[S % N], order[(E + 1) % N]]
|
---|
54 | );
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | //Determine the shortest path in the graph
|
---|
59 | T = int.MaxValue / 2;
|
---|
60 | for (int S = 0; S < N - 1; S++) //Start node in graph O(N)
|
---|
61 | for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1)
|
---|
62 | graph[SM, S] = 0;
|
---|
63 | graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2;
|
---|
64 | prevPath[SM, 0] = -1;
|
---|
65 | for (int E = S + 1; E < N; E++) //Currently calculated node O(N)
|
---|
66 | for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1)
|
---|
67 | graph[EM, E] = int.MaxValue / 2;
|
---|
68 | for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N)
|
---|
69 | int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E];
|
---|
70 | if (newWeight < graph[EM, E]) {
|
---|
71 | graph[EM, E] = newWeight;
|
---|
72 | prevPath[EM, E] = EC;
|
---|
73 | }
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 | int EP = S + N; //End point.
|
---|
78 | int newT = int.MaxValue / 2;
|
---|
79 | for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N)
|
---|
80 | int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP];
|
---|
81 | if (newWeight < newT) {
|
---|
82 | newT = newWeight;
|
---|
83 | prevPath[SM, S] = EC;
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | if (newT < T) {
|
---|
88 | T = newT;
|
---|
89 | optimalAssignment = MakeAssignement(S, SM, prevPath, order);
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | //Omitted solutions
|
---|
94 | for (int machine = 0; machine < 2; machine++) {
|
---|
95 | int[] assignment = Enumerable.Repeat(machine, N).ToArray();
|
---|
96 | int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes);
|
---|
97 | if (newT < T) { //New best solution has been found
|
---|
98 | T = newT;
|
---|
99 | optimalAssignment = assignment;
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | return optimalAssignment;
|
---|
104 | }
|
---|
105 |
|
---|
106 | private static int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {
|
---|
107 | var N = order.Length;
|
---|
108 | int[] assignment = Enumerable.Repeat(-1, N).ToArray();
|
---|
109 | var inverseOrder = new int[N];
|
---|
110 |
|
---|
111 | for (int i = 0; i < N; i++)
|
---|
112 | inverseOrder[order[i]] = i;
|
---|
113 |
|
---|
114 | int end = start + N;
|
---|
115 |
|
---|
116 | int currMach = startMach;
|
---|
117 | int currNode = start;
|
---|
118 | while (true) {
|
---|
119 | assignment[inverseOrder[currNode]] = currMach;
|
---|
120 | currNode = prevPath[currMach, currNode];
|
---|
121 | currMach = currMach == 0 ? 1 : 0;
|
---|
122 | if (currNode == start)
|
---|
123 | break;
|
---|
124 | }
|
---|
125 |
|
---|
126 | currMach = startMach;
|
---|
127 | for (int i = 0; i < N; i++) {
|
---|
128 | if (assignment[inverseOrder[i]] != -1)
|
---|
129 | currMach = currMach == 0 ? 1 : 0;
|
---|
130 | else
|
---|
131 | assignment[inverseOrder[i]] = currMach;
|
---|
132 | }
|
---|
133 |
|
---|
134 | return assignment;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | }
|
---|