1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
30 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.Scheduling.CFSAP {
|
---|
37 | public enum OptimalAssignmentType { None, Polynomial, OneOpt, Both };
|
---|
38 |
|
---|
39 | [Item("Genetic Algorithm (CFSAP)", "")]
|
---|
40 | [StorableClass]
|
---|
41 | public class GeneticAlgorithm : BasicAlgorithm {
|
---|
42 | public override bool SupportsPause { get { return true; } }
|
---|
43 |
|
---|
44 | public override Type ProblemType {
|
---|
45 | get { return typeof(CFSAP); }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public new CFSAP Problem {
|
---|
49 | get { return (CFSAP)base.Problem; }
|
---|
50 | set { base.Problem = value; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | [Storable]
|
---|
54 | private IFixedValueParameter<IntValue> populationSizeParameter;
|
---|
55 | public IFixedValueParameter<IntValue> PopulationSizeParameter {
|
---|
56 | get { return populationSizeParameter; }
|
---|
57 | }
|
---|
58 | [Storable]
|
---|
59 | private IFixedValueParameter<IntValue> elitesParameter;
|
---|
60 | public IFixedValueParameter<IntValue> ElitesParameter {
|
---|
61 | get { return elitesParameter; }
|
---|
62 | }
|
---|
63 | [Storable]
|
---|
64 | private IFixedValueParameter<PercentValue> mutationProbabilityParameter;
|
---|
65 | public IFixedValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
66 | get { return mutationProbabilityParameter; }
|
---|
67 | }
|
---|
68 | [Storable]
|
---|
69 | private IFixedValueParameter<IntValue> maximumGenerationsParameter;
|
---|
70 | public IFixedValueParameter<IntValue> MaximumGenerationsParameter {
|
---|
71 | get { return maximumGenerationsParameter; }
|
---|
72 | }
|
---|
73 | [Storable]
|
---|
74 | private IFixedValueParameter<IntValue> maximumEvaluatedSolutionsParameter;
|
---|
75 | public IFixedValueParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
76 | get { return maximumEvaluatedSolutionsParameter; }
|
---|
77 | }
|
---|
78 | [Storable]
|
---|
79 | private IFixedValueParameter<BoolValue> pauseAfterGenerationParameter;
|
---|
80 | public IFixedValueParameter<BoolValue> PauseAfterGenerationParameter {
|
---|
81 | get { return pauseAfterGenerationParameter; }
|
---|
82 | }
|
---|
83 | [Storable]
|
---|
84 | private IFixedValueParameter<EnumValue<OptimalAssignmentType>> optimalAssignmentParameter;
|
---|
85 | public IFixedValueParameter<EnumValue<OptimalAssignmentType>> OptimalAssignmentParameter {
|
---|
86 | get { return optimalAssignmentParameter; }
|
---|
87 | }
|
---|
88 |
|
---|
89 | public int PopulationSize {
|
---|
90 | get { return populationSizeParameter.Value.Value; }
|
---|
91 | set { populationSizeParameter.Value.Value = value; }
|
---|
92 | }
|
---|
93 | public int Elites {
|
---|
94 | get { return elitesParameter.Value.Value; }
|
---|
95 | set { elitesParameter.Value.Value = value; }
|
---|
96 | }
|
---|
97 | public double MutationProbability {
|
---|
98 | get { return mutationProbabilityParameter.Value.Value; }
|
---|
99 | set { mutationProbabilityParameter.Value.Value = value; }
|
---|
100 | }
|
---|
101 | public int MaximumGenerations {
|
---|
102 | get { return maximumGenerationsParameter.Value.Value; }
|
---|
103 | set { maximumGenerationsParameter.Value.Value = value; }
|
---|
104 | }
|
---|
105 | public int MaximumEvaluatedSolutions {
|
---|
106 | get { return maximumEvaluatedSolutionsParameter.Value.Value; }
|
---|
107 | set { maximumEvaluatedSolutionsParameter.Value.Value = value; }
|
---|
108 | }
|
---|
109 | public bool PauseAfterGeneration {
|
---|
110 | get { return pauseAfterGenerationParameter.Value.Value; }
|
---|
111 | set { pauseAfterGenerationParameter.Value.Value = value; }
|
---|
112 | }
|
---|
113 | public OptimalAssignmentType OptimalAssignment {
|
---|
114 | get { return optimalAssignmentParameter.Value.Value; }
|
---|
115 | set { optimalAssignmentParameter.Value.Value = value; }
|
---|
116 | }
|
---|
117 |
|
---|
118 | [StorableConstructor]
|
---|
119 | protected GeneticAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
120 | protected GeneticAlgorithm(GeneticAlgorithm original, Cloner cloner)
|
---|
121 | : base(original, cloner) {
|
---|
122 | populationSizeParameter = cloner.Clone(original.populationSizeParameter);
|
---|
123 | elitesParameter = cloner.Clone(original.elitesParameter);
|
---|
124 | mutationProbabilityParameter = cloner.Clone(original.mutationProbabilityParameter);
|
---|
125 | maximumGenerationsParameter = cloner.Clone(original.maximumGenerationsParameter);
|
---|
126 | maximumEvaluatedSolutionsParameter = cloner.Clone(original.maximumEvaluatedSolutionsParameter);
|
---|
127 | pauseAfterGenerationParameter = cloner.Clone(original.pauseAfterGenerationParameter);
|
---|
128 | optimalAssignmentParameter = cloner.Clone(original.optimalAssignmentParameter);
|
---|
129 |
|
---|
130 | generation = original.generation;
|
---|
131 | evaluatedSolutions = original.evaluatedSolutions;
|
---|
132 | bestQuality = original.bestQuality;
|
---|
133 |
|
---|
134 | if (original.population != null)
|
---|
135 | population = original.population.Select(cloner.Clone).ToArray();
|
---|
136 | if (original.nextGeneration != null)
|
---|
137 | nextGeneration = original.nextGeneration.Select(cloner.Clone).ToArray();
|
---|
138 | if (original.optimalSequences != null)
|
---|
139 | optimalSequences = new HashSet<Permutation>(original.optimalSequences, new PermutationEqualityComparer());
|
---|
140 | }
|
---|
141 | public GeneticAlgorithm() {
|
---|
142 | Parameters.Add(populationSizeParameter = new FixedValueParameter<IntValue>("PopulationSize", "The size of the population, each individual of the population is a solution with a permutation and a binary vector.", new IntValue(500)));
|
---|
143 | Parameters.Add(elitesParameter = new FixedValueParameter<IntValue>("Elites", "The number of best individuals from the previous population that will continue to the next generation.", new IntValue(1)));
|
---|
144 | Parameters.Add(mutationProbabilityParameter = new FixedValueParameter<PercentValue>("MutationProbability", "The probability that an individual should be mutated after it has been created through crossover.", new PercentValue(0.05)));
|
---|
145 | Parameters.Add(maximumGenerationsParameter = new FixedValueParameter<IntValue>("MaximumGenerations", "The number of generations that the algorithm may run for.", new IntValue(1000000)));
|
---|
146 | Parameters.Add(maximumEvaluatedSolutionsParameter = new FixedValueParameter<IntValue>("MaximumEvaluatedSolutions", "The number of evaluated solutions before the algorithm terminates.", new IntValue(100000000)));
|
---|
147 | Parameters.Add(pauseAfterGenerationParameter = new FixedValueParameter<BoolValue>("PauseAfterGeneration", "Whether the algorithm should pause after each generation.", new BoolValue(true)));
|
---|
148 | Parameters.Add(optimalAssignmentParameter = new FixedValueParameter<EnumValue<OptimalAssignmentType>>("OptimalAssignment", "Which optimal assignment strategy should be used.", new EnumValue<OptimalAssignmentType>(OptimalAssignmentType.Polynomial)));
|
---|
149 | }
|
---|
150 |
|
---|
151 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
152 | return new GeneticAlgorithm(this, cloner);
|
---|
153 | }
|
---|
154 |
|
---|
155 | protected override void OnProblemChanged() {
|
---|
156 | base.OnProblemChanged();
|
---|
157 | }
|
---|
158 |
|
---|
159 | [Storable]
|
---|
160 | private IRandom random;
|
---|
161 | [Storable]
|
---|
162 | private int generation;
|
---|
163 | [Storable]
|
---|
164 | private int evaluatedSolutions;
|
---|
165 | [Storable]
|
---|
166 | private double bestQuality;
|
---|
167 | [Storable]
|
---|
168 | private EncodedSolution[] population;
|
---|
169 | [Storable]
|
---|
170 | private EncodedSolution[] nextGeneration;
|
---|
171 | [Storable]
|
---|
172 | private HashSet<Permutation> optimalSequences;
|
---|
173 |
|
---|
174 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
175 | base.Initialize(cancellationToken);
|
---|
176 | random = new MersenneTwister();
|
---|
177 | optimalSequences = new HashSet<Permutation>(new PermutationEqualityComparer());
|
---|
178 | generation = 0;
|
---|
179 | evaluatedSolutions = 0;
|
---|
180 | population = new EncodedSolution[PopulationSize];
|
---|
181 | nextGeneration = new EncodedSolution[PopulationSize - Elites];
|
---|
182 | bestQuality = double.MaxValue;
|
---|
183 | for (var p = 0; p < PopulationSize; p++) {
|
---|
184 | population[p] = new EncodedSolution() {
|
---|
185 | Sequence = new Permutation(PermutationTypes.RelativeDirected, Problem.ProcessingTimes.Columns, random),
|
---|
186 | Assignment = new BinaryVector(Problem.ProcessingTimes.Columns, random)
|
---|
187 | };
|
---|
188 | population[p].Quality = Problem.Evaluate(population[p].Sequence, population[p].Assignment);
|
---|
189 | evaluatedSolutions++;
|
---|
190 | if (population[p].Quality < bestQuality) bestQuality = population[p].Quality;
|
---|
191 | }
|
---|
192 | Array.Sort(population);
|
---|
193 | Results.Add(new Result("BestQuality", new DoubleValue(bestQuality)));
|
---|
194 | Results.Add(new Result("EvaluatedSolutions", new IntValue(evaluatedSolutions)));
|
---|
195 | Results.Add(new Result("Generation", new IntValue(generation)));
|
---|
196 | if (PauseAfterGeneration) Pause();
|
---|
197 | }
|
---|
198 |
|
---|
199 | protected override void Run(CancellationToken cancellationToken) {
|
---|
200 | if (cancellationToken.IsCancellationRequested) return;
|
---|
201 |
|
---|
202 | while (generation < MaximumGenerations) {
|
---|
203 | if (evaluatedSolutions > MaximumEvaluatedSolutions) return;
|
---|
204 | for (var p = 0; p < PopulationSize - Elites; p++) {
|
---|
205 | var parent1 = TournamentSelect((int)Math.Round(Math.Max(PopulationSize / 71.0, 2)));
|
---|
206 | var parent2 = TournamentSelect((int)Math.Round(Math.Max(PopulationSize / 71.0, 2)));
|
---|
207 | nextGeneration[p] = new EncodedSolution() {
|
---|
208 | Sequence = CrossSequence(parent1.Sequence, parent2.Sequence),
|
---|
209 | Assignment = CrossAssignment(parent1.Assignment, parent2.Assignment)
|
---|
210 | };
|
---|
211 |
|
---|
212 | var mutProb = random.NextDouble();
|
---|
213 | if (mutProb < MutationProbability) {
|
---|
214 | MutateSequence(nextGeneration[p].Sequence);
|
---|
215 | MutateAssignment(nextGeneration[p].Assignment);
|
---|
216 | }
|
---|
217 |
|
---|
218 | nextGeneration[p].Quality = Problem.Evaluate(nextGeneration[p].Sequence, nextGeneration[p].Assignment);
|
---|
219 | evaluatedSolutions++;
|
---|
220 |
|
---|
221 | if (nextGeneration[p].Quality <= bestQuality) {
|
---|
222 | switch (OptimalAssignment) {
|
---|
223 | case OptimalAssignmentType.None:
|
---|
224 | break;
|
---|
225 | case OptimalAssignmentType.Polynomial:
|
---|
226 | OptimalPolynomialAssignment(nextGeneration[p]);
|
---|
227 | break;
|
---|
228 | case OptimalAssignmentType.OneOpt:
|
---|
229 | OneOptAssignment(nextGeneration[p]);
|
---|
230 | break;
|
---|
231 | case OptimalAssignmentType.Both:
|
---|
232 | HybridAssignment(nextGeneration[p]);
|
---|
233 | break;
|
---|
234 | default:
|
---|
235 | throw new InvalidOperationException("Optimal assignment strategy not defined.");
|
---|
236 | }
|
---|
237 |
|
---|
238 | if (nextGeneration[p].Quality < bestQuality) {
|
---|
239 | bestQuality = nextGeneration[p].Quality;
|
---|
240 | ((DoubleValue)Results["BestQuality"].Value).Value = bestQuality;
|
---|
241 | }
|
---|
242 | }
|
---|
243 | }
|
---|
244 |
|
---|
245 | for (var p = Elites; p < PopulationSize; p++) {
|
---|
246 | population[p] = nextGeneration[p - Elites];
|
---|
247 | }
|
---|
248 | Array.Sort(population);
|
---|
249 |
|
---|
250 | generation++;
|
---|
251 |
|
---|
252 | ((IntValue)Results["EvaluatedSolutions"].Value).Value = evaluatedSolutions;
|
---|
253 | ((IntValue)Results["Generation"].Value).Value = generation;
|
---|
254 |
|
---|
255 | if (PauseAfterGeneration || cancellationToken.IsCancellationRequested) {
|
---|
256 | if (!cancellationToken.IsCancellationRequested) Pause();
|
---|
257 | break;
|
---|
258 | }
|
---|
259 | }
|
---|
260 | }
|
---|
261 |
|
---|
262 | private void OptimalPolynomialAssignment(EncodedSolution generation) {
|
---|
263 | if (!optimalSequences.Contains(generation.Sequence)) {
|
---|
264 | var assignment = Scheduling.CFSAP.OptimalPolynomialAssignment.MakeAssignment(generation.Sequence, Problem.ProcessingTimes, Problem.SetupTimes, out var cycleTime);
|
---|
265 | evaluatedSolutions++;
|
---|
266 | generation.Assignment = new BinaryVector(assignment.Select(x => x == 1).ToArray());
|
---|
267 | generation.Quality = cycleTime;
|
---|
268 | optimalSequences.Add(generation.Sequence);
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | private void OneOptAssignment(EncodedSolution generation) {
|
---|
273 | var assignment = Scheduling.CFSAP.OneOptAssignment.MakeAssignment(generation.Sequence, generation.Assignment, Problem.ProcessingTimes, Problem.SetupTimes, out var cycleTime);
|
---|
274 | evaluatedSolutions++;
|
---|
275 | generation.Assignment = assignment;
|
---|
276 | generation.Quality = cycleTime;
|
---|
277 | }
|
---|
278 |
|
---|
279 | private void HybridAssignment(EncodedSolution generation) {
|
---|
280 | var a = random.Next(2);
|
---|
281 | switch (a) {
|
---|
282 | case 0: OptimalPolynomialAssignment(generation); break;
|
---|
283 | case 1: OneOptAssignment(generation); break;
|
---|
284 | default: throw new InvalidOperationException("Assignment not defined.");
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | private EncodedSolution TournamentSelect(int groupSize) {
|
---|
289 | var selected = population[random.Next(population.Length)];
|
---|
290 | for (var i = 1; i < groupSize; i++) {
|
---|
291 | var competitor = population[random.Next(population.Length)];
|
---|
292 | if (selected.Quality > competitor.Quality) {
|
---|
293 | selected = competitor;
|
---|
294 | }
|
---|
295 | }
|
---|
296 | return selected;
|
---|
297 | }
|
---|
298 |
|
---|
299 | private Permutation CrossSequence(Permutation sequence1, Permutation sequence2) {
|
---|
300 | var cx = random.Next(3);
|
---|
301 | switch (cx) {
|
---|
302 | case 0: return OrderCrossover.Apply(random, sequence1, sequence2);
|
---|
303 | case 1: return OrderCrossover2.Apply(random, sequence1, sequence2);
|
---|
304 | case 2: return MaximalPreservativeCrossover.Apply(random, sequence1, sequence2);
|
---|
305 | default: throw new InvalidOperationException("Crossover not defined.");
|
---|
306 | }
|
---|
307 | }
|
---|
308 |
|
---|
309 | private void MutateSequence(Permutation sequence) {
|
---|
310 | var m = random.Next(7);
|
---|
311 | switch (m) {
|
---|
312 | case 0: InversionManipulator.Apply(random, sequence); break;
|
---|
313 | case 1: InsertionManipulator.Apply(random, sequence); break;
|
---|
314 | case 2: Swap2Manipulator.Apply(random, sequence); break;
|
---|
315 | case 3: Swap3Manipulator.Apply(random, sequence); break;
|
---|
316 | case 4: TranslocationManipulator.Apply(random, sequence); break;
|
---|
317 | case 5: TranslocationInversionManipulator.Apply(random, sequence); break;
|
---|
318 | case 6: ScrambleManipulator.Apply(random, sequence); break;
|
---|
319 | default: throw new InvalidOperationException("Manipulator not defined.");
|
---|
320 | }
|
---|
321 | }
|
---|
322 |
|
---|
323 | private BinaryVector CrossAssignment(BinaryVector assign1, BinaryVector assign2) {
|
---|
324 | var cx = random.Next(3);
|
---|
325 | switch (cx) {
|
---|
326 | case 0: return UniformCrossover.Apply(random, assign1, assign2);
|
---|
327 | case 1: return NPointCrossover.Apply(random, assign1, assign2, new IntValue(1));
|
---|
328 | case 2: return NPointCrossover.Apply(random, assign1, assign2, new IntValue(2));
|
---|
329 | default: throw new InvalidOperationException("Crossover not defined.");
|
---|
330 | }
|
---|
331 | }
|
---|
332 |
|
---|
333 | private void MutateAssignment(BinaryVector assignment) {
|
---|
334 | SomePositionsBitflipManipulator.Apply(random, assignment, new DoubleValue(0.2));
|
---|
335 | }
|
---|
336 |
|
---|
337 | [StorableClass]
|
---|
338 | private class EncodedSolution : DeepCloneable, IComparable<EncodedSolution> {
|
---|
339 | [Storable]
|
---|
340 | public Permutation Sequence { get; set; }
|
---|
341 | [Storable]
|
---|
342 | public BinaryVector Assignment { get; set; }
|
---|
343 | [Storable]
|
---|
344 | public double Quality { get; set; }
|
---|
345 |
|
---|
346 | [StorableConstructor]
|
---|
347 | private EncodedSolution(bool deserializing) { }
|
---|
348 |
|
---|
349 | private EncodedSolution(EncodedSolution original, Cloner cloner) : base(original, cloner) {
|
---|
350 | Sequence = cloner.Clone(original.Sequence);
|
---|
351 | Assignment = cloner.Clone(original.Assignment);
|
---|
352 | Quality = original.Quality;
|
---|
353 | }
|
---|
354 |
|
---|
355 | public EncodedSolution() { }
|
---|
356 |
|
---|
357 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
358 | return new EncodedSolution(this, cloner);
|
---|
359 | }
|
---|
360 |
|
---|
361 | public int CompareTo(EncodedSolution other) {
|
---|
362 | return Quality.CompareTo(other.Quality);
|
---|
363 | }
|
---|
364 | }
|
---|
365 | }
|
---|
366 | }
|
---|