[14757] | 1 | #region License Information
|
---|
| 2 |
|
---|
| 3 | /* HeuristicLab
|
---|
| 4 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #endregion
|
---|
| 23 |
|
---|
| 24 | using System;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.Instances;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.Scheduling.CFSAP {
|
---|
| 36 | [Item("Cyclic Flow Shop with two machine nests (CFSAP) sequence only", "Non-permutational cyclic flow shop scheduling problem with two machine nests from W. Bozejko.")]
|
---|
| 37 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
| 38 | [StorableClass]
|
---|
| 39 | public class CFSAPSequenceOnly : SingleObjectiveBasicProblem<PermutationEncoding>, IProblemInstanceConsumer<CFSAPData> {
|
---|
| 40 | public override bool Maximization { get { return false; } }
|
---|
| 41 |
|
---|
| 42 | public IValueParameter<IntMatrix> ProcessingTimesParameter {
|
---|
| 43 | get { return (IValueParameter<IntMatrix>)Parameters["ProcessingTimes"]; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public IValueParameter<ItemList<IntMatrix>> SetupTimesParameter {
|
---|
| 47 | get { return (IValueParameter<ItemList<IntMatrix>>)Parameters["SetupTimes"]; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | [StorableConstructor]
|
---|
| 51 | protected CFSAPSequenceOnly(bool deserializing) : base(deserializing) {}
|
---|
| 52 | protected CFSAPSequenceOnly(CFSAPSequenceOnly original, Cloner cloner)
|
---|
| 53 | : base(original, cloner) {}
|
---|
| 54 | public CFSAPSequenceOnly() {
|
---|
| 55 | Parameters.Add(new ValueParameter<IntMatrix>("ProcessingTimes", "The processing times of each job for each machine nest."));
|
---|
| 56 | Parameters.Add(new ValueParameter<ItemList<IntMatrix>>("SetupTimes", "The sequence dependent set up times among all jobs for each machine nest."));
|
---|
| 57 |
|
---|
| 58 | ProcessingTimesParameter.Value = new IntMatrix(new int[,] {
|
---|
| 59 | { 5, 4, 3, 2, 1 },
|
---|
| 60 | { 1, 2, 3, 4, 5 }
|
---|
| 61 | });
|
---|
| 62 |
|
---|
| 63 | SetupTimesParameter.Value = new ItemList<IntMatrix>(2);
|
---|
| 64 | SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
|
---|
| 65 | { 3, 4, 5, 4, 3 },
|
---|
| 66 | { 3, 4, 5, 4, 3 },
|
---|
| 67 | { 3, 4, 5, 4, 3 },
|
---|
| 68 | { 3, 4, 5, 4, 3 },
|
---|
| 69 | { 3, 4, 5, 4, 3 },
|
---|
| 70 | }));
|
---|
| 71 | SetupTimesParameter.Value.Add(new IntMatrix(new int[,] {
|
---|
| 72 | { 5, 4, 3, 4, 5 },
|
---|
| 73 | { 5, 4, 3, 4, 5 },
|
---|
| 74 | { 5, 4, 3, 4, 5 },
|
---|
| 75 | { 5, 4, 3, 4, 5 },
|
---|
| 76 | { 5, 4, 3, 4, 5 },
|
---|
| 77 | }));
|
---|
| 78 |
|
---|
| 79 | Encoding.Length = 5;
|
---|
| 80 |
|
---|
| 81 | Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
|
---|
| 82 | Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
|
---|
| 83 | Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 87 | return new CFSAPSequenceOnly(this, cloner);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
| 91 | var order = individual.Permutation(Encoding.Name);
|
---|
| 92 | var N = order.Length;
|
---|
| 93 | var processingTimes = ProcessingTimesParameter.Value;
|
---|
| 94 | var setupTimes = SetupTimesParameter.Value;
|
---|
| 95 |
|
---|
| 96 | int[,,] weights = new int[2, 2 * N, 2 * N];
|
---|
| 97 | int[,] graph = new int[2, N];
|
---|
| 98 | int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation
|
---|
| 99 | int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation
|
---|
| 100 |
|
---|
| 101 | //Calculate weights in the graph
|
---|
| 102 | for (int S = 0; S < N; S++) { //Starting point of the arc
|
---|
| 103 | for (int sM = 0; sM < 2; sM++) { //Starting point machine
|
---|
| 104 | int eM = sM == 0 ? 1 : 0;
|
---|
| 105 | weights[sM, S, S + 1] = 0;
|
---|
| 106 |
|
---|
| 107 | for (int E = S + 2; E < S + N; E++)
|
---|
| 108 | weights[sM, S, E] =
|
---|
| 109 | weights[sM, S, E - 1] +
|
---|
| 110 | processingTimes[eM, order[(E - 1) % N]] +
|
---|
| 111 | setupTimes[eM][order[(E - 1) % N], order[E % N]];
|
---|
| 112 |
|
---|
| 113 | for (int E = S + 1; E < S + N; E++)
|
---|
| 114 | weights[sM, S, E] += (
|
---|
| 115 | processingTimes[sM, order[S % N]] +
|
---|
| 116 | setupTimes[sM][order[S % N], order[(E + 1) % N]]
|
---|
| 117 | );
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | //Determine the shortest path in the graph
|
---|
| 122 | int T = int.MaxValue / 2;
|
---|
| 123 | for (int S = 0; S < N - 1; S++) //Start node in graph O(N)
|
---|
| 124 | for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1)
|
---|
| 125 | graph[SM, S] = 0;
|
---|
| 126 | graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2;
|
---|
| 127 | prevPath[SM, 0] = -1;
|
---|
| 128 | for (int E = S + 1; E < N; E++) //Currently calculated node O(N)
|
---|
| 129 | for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1)
|
---|
| 130 | graph[EM, E] = int.MaxValue / 2;
|
---|
| 131 | for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N)
|
---|
| 132 | int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E];
|
---|
| 133 | if (newWeight < graph[EM, E]) {
|
---|
| 134 | graph[EM, E] = newWeight;
|
---|
| 135 | prevPath[EM, E] = EC;
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | int EP = S + N; //End point.
|
---|
| 141 | int newT = int.MaxValue / 2;
|
---|
| 142 | for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N)
|
---|
| 143 | int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP];
|
---|
| 144 | if (newWeight < newT) {
|
---|
| 145 | newT = newWeight;
|
---|
| 146 | prevPath[SM, S] = EC;
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | if (newT < T) {
|
---|
| 151 | T = newT;
|
---|
| 152 | optimalAssignment = MakeAssignement(S, SM, prevPath, order);
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | //Omitted solutions
|
---|
| 157 | for (int machine = 0; machine < 2; machine++) {
|
---|
| 158 | int[] assignment = Enumerable.Repeat(machine, N).ToArray();
|
---|
| 159 | int newT = EvaluateAssignement(order, assignment, processingTimes, setupTimes);
|
---|
| 160 | if (newT < T) { //New best solution has been found
|
---|
| 161 | T = newT;
|
---|
| 162 | assignment.CopyTo(optimalAssignment, N);
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | return T;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | //Function to evaluate individual with the specified assignment
|
---|
| 170 | public static int EvaluateAssignement(Permutation order, int[] assignment, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes) {
|
---|
| 171 | var N = order.Length;
|
---|
| 172 | int T = 0;
|
---|
| 173 |
|
---|
| 174 | for (int i = 0; i < N; i++) {
|
---|
| 175 | int operation = order[i];
|
---|
| 176 | int machine = assignment[operation];
|
---|
| 177 | T += processingTimes[machine, operation];
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | for (int machine = 0; machine < 2; machine++) {
|
---|
| 181 | int first = -1;
|
---|
| 182 | int last = -1;
|
---|
| 183 | for (int i = 0; i < N; i++) {
|
---|
| 184 | int operation = order[i];
|
---|
| 185 | if (assignment[operation] == machine) {
|
---|
| 186 | if (first == -1)
|
---|
| 187 | first = operation;
|
---|
| 188 | else
|
---|
| 189 | T += setupTimes[machine][last, operation];
|
---|
| 190 | last = operation;
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | if (last != -1 && first != -1)
|
---|
| 194 | T += setupTimes[machine][last, first];
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | return T;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | private int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {
|
---|
| 201 | var N = order.Length;
|
---|
| 202 | int[] assignment = Enumerable.Repeat(-1, N).ToArray();
|
---|
| 203 | var inverseOrder = new int[N];
|
---|
| 204 |
|
---|
| 205 | for (int i = 0; i < N; i++)
|
---|
| 206 | inverseOrder[order[i]] = i;
|
---|
| 207 |
|
---|
| 208 | int end = start + N;
|
---|
| 209 |
|
---|
| 210 | int currMach = startMach;
|
---|
| 211 | int currNode = start;
|
---|
| 212 | while (true) {
|
---|
| 213 | assignment[inverseOrder[currNode]] = currMach;
|
---|
| 214 | currNode = prevPath[currMach, currNode];
|
---|
| 215 | currMach = currMach == 0 ? 1 : 0;
|
---|
| 216 | if (currNode == start)
|
---|
| 217 | break;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | currMach = startMach;
|
---|
| 221 | for (int i = 0; i < N; i++) {
|
---|
| 222 | if (assignment[inverseOrder[i]] != -1)
|
---|
| 223 | currMach = currMach == 0 ? 1 : 0;
|
---|
| 224 | else
|
---|
| 225 | assignment[inverseOrder[i]] = currMach;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | return assignment;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | public void Load(CFSAPData data) {
|
---|
| 232 | if (data.MachineNests != 2) throw new ArgumentException("Currently only two machine nests are supported.");
|
---|
| 233 | ProcessingTimesParameter.Value = new IntMatrix(data.ProcessingTimes);
|
---|
| 234 | var setups = new ItemList<IntMatrix>(data.MachineNests);
|
---|
| 235 | for (var m = 0; m < data.SetupTimes.GetLength(0); m++) {
|
---|
| 236 | var setupTimes = new int[data.Jobs, data.Jobs];
|
---|
| 237 | for (var i = 0; i < data.Jobs; i++)
|
---|
| 238 | for (var j = 0; j < data.Jobs; j++)
|
---|
| 239 | setupTimes[i, j] = data.SetupTimes[m, i, j];
|
---|
| 240 | setups.Add(new IntMatrix(setupTimes));
|
---|
| 241 | }
|
---|
| 242 | SetupTimesParameter.Value = setups;
|
---|
| 243 | Encoding.Length = data.Jobs;
|
---|
| 244 | Name = data.Name;
|
---|
| 245 | Description = data.Description;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | }
|
---|