[1044] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using HeuristicLab.PluginInfrastructure;
|
---|
| 27 | using System.Net;
|
---|
| 28 | using System.ServiceModel;
|
---|
| 29 | using HeuristicLab.CEDMA.DB.Interfaces;
|
---|
| 30 | using HeuristicLab.CEDMA.DB;
|
---|
| 31 | using System.ServiceModel.Description;
|
---|
| 32 | using System.Linq;
|
---|
| 33 | using HeuristicLab.CEDMA.Core;
|
---|
[1053] | 34 | using HeuristicLab.GP.StructureIdentification;
|
---|
| 35 | using HeuristicLab.Data;
|
---|
[1060] | 36 | using HeuristicLab.Core;
|
---|
[1044] | 37 |
|
---|
| 38 | namespace HeuristicLab.CEDMA.Server {
|
---|
| 39 | public class Dispatcher {
|
---|
[1060] | 40 | private List<Execution> dispatchQueue;
|
---|
[1044] | 41 | public IList<string> DispatchQueue {
|
---|
[1053] | 42 | get { return dispatchQueue.Select(t => "StandardGP").ToList(); }
|
---|
[1044] | 43 | }
|
---|
| 44 |
|
---|
| 45 | private IStore store;
|
---|
| 46 |
|
---|
| 47 | public Dispatcher(IStore store) {
|
---|
| 48 | this.store = store;
|
---|
[1060] | 49 | this.dispatchQueue = new List<Execution>();
|
---|
[1044] | 50 | }
|
---|
| 51 |
|
---|
| 52 | private void FillDispatchQueue() {
|
---|
[1130] | 53 | // find and select a dataset
|
---|
| 54 | var dataSetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("DataSet");
|
---|
| 55 | var dataSetQuery = new Statement[] {
|
---|
| 56 | new Statement(dataSetVar, Ontology.PredicateInstanceOf, Ontology.TypeDataSet)
|
---|
| 57 | };
|
---|
| 58 |
|
---|
| 59 | var dataSetBindings = store.Query("?DataSet <"+Ontology.PredicateInstanceOf.Uri+"> <"+Ontology.TypeDataSet.Uri+"> .");
|
---|
| 60 |
|
---|
| 61 | // no datasets => do nothing
|
---|
| 62 | if (dataSetBindings.Count() == 0) return;
|
---|
| 63 |
|
---|
| 64 | // assume last dataset is the most interesting one
|
---|
| 65 | // find and select all results for this dataset
|
---|
| 66 | var dataSetEntity = (Entity)dataSetBindings.Last().Get("DataSet");
|
---|
| 67 | var targetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("TargetVariable");
|
---|
| 68 | var modelVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("Model");
|
---|
| 69 | var modelMAPE = new HeuristicLab.CEDMA.DB.Interfaces.Variable("ModelMAPE");
|
---|
| 70 |
|
---|
| 71 | var query = "<" + dataSetEntity.Uri + "> <" + Ontology.PredicateHasModel.Uri + "> ?Model ." + Environment.NewLine +
|
---|
| 72 | "?Model <" + Ontology.TargetVariable.Uri + "> ?TargetVariable ." + Environment.NewLine +
|
---|
| 73 | "?Model <" + Ontology.ValidationMeanAbsolutePercentageError.Uri + "> ?ModelMAPE .";
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | var bindings = store.Query(query);
|
---|
| 78 | DataSet dataSet = new DataSet(store, dataSetEntity);
|
---|
| 79 | double[] utilization = new double[dataSet.Problem.AllowedTargetVariables.Count];
|
---|
| 80 | int i = 0;
|
---|
| 81 | int totalN = bindings.Count();
|
---|
| 82 | foreach (int targetVariable in dataSet.Problem.AllowedTargetVariables) {
|
---|
| 83 | var targetVarBindings = bindings.Where(x => (int)((Literal)x.Get("TargetVariable")).Value == targetVariable);
|
---|
| 84 | if (targetVarBindings.Count() == 0) {
|
---|
| 85 | utilization[i++] = double.PositiveInfinity;
|
---|
| 86 | } else {
|
---|
| 87 | double averageMape = targetVarBindings.Average(x => (double)((Literal)x.Get("ModelMAPE")).Value);
|
---|
| 88 | double n = targetVarBindings.Count();
|
---|
| 89 | utilization[i++] = -averageMape + Math.Sqrt(Math.Log(totalN) / n) * 0.1;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | int[] idx = Enumerable.Range(0, utilization.Length).ToArray();
|
---|
| 93 | Array.Sort(utilization, idx);
|
---|
| 94 | int nConfigurations = utilization.Length;
|
---|
| 95 | for (int j = nConfigurations - 1; j > nConfigurations * 0.8; j--) {
|
---|
[1151] | 96 | int targetVariable = dataSet.Problem.AllowedTargetVariables[idx[j]];
|
---|
[1130] | 97 | IEngine engine = CreateEngine(dataSet.Problem, targetVariable);
|
---|
| 98 | if (engine != null) {
|
---|
| 99 | QueueJob(new Execution(dataSetEntity, engine, targetVariable));
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
[1044] | 102 | }
|
---|
| 103 |
|
---|
[1060] | 104 | private void QueueJob(Execution execution) {
|
---|
| 105 | dispatchQueue.Add(execution);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | public Execution GetNextJob() {
|
---|
[1130] | 109 | if (dispatchQueue.Count == 0) {
|
---|
| 110 | FillDispatchQueue();
|
---|
| 111 | }
|
---|
[1072] | 112 | if (dispatchQueue.Count > 0) {
|
---|
| 113 | Execution next = dispatchQueue[0];
|
---|
| 114 | dispatchQueue.RemoveAt(0);
|
---|
| 115 | return next;
|
---|
| 116 | } else
|
---|
| 117 | return null;
|
---|
[1060] | 118 | }
|
---|
| 119 |
|
---|
| 120 | internal void Start() {
|
---|
| 121 | FillDispatchQueue();
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | private IEngine CreateEngine(Problem problem, int targetVariable) {
|
---|
| 125 | switch (problem.LearningTask) {
|
---|
| 126 | case LearningTask.Classification: return null;
|
---|
| 127 | case LearningTask.Regression: {
|
---|
| 128 | return CreateStandardGp(problem, targetVariable).Engine;
|
---|
| 129 | }
|
---|
| 130 | case LearningTask.TimeSeries: return null;
|
---|
| 131 | case LearningTask.Clustering: return null;
|
---|
| 132 | default: return null;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | private StandardGP CreateStandardGp(Problem problem, int targetVariable) {
|
---|
| 137 | ProblemInjector probInjector = new ProblemInjector(problem);
|
---|
[1053] | 138 | probInjector.TargetVariable = targetVariable;
|
---|
| 139 | StandardGP sgp = new StandardGP();
|
---|
| 140 | sgp.SetSeedRandomly = true;
|
---|
[1130] | 141 | sgp.MaxGenerations = 300;
|
---|
| 142 | sgp.PopulationSize = 10000;
|
---|
[1053] | 143 | sgp.Elites = 1;
|
---|
| 144 | sgp.ProblemInjector = probInjector;
|
---|
| 145 | return sgp;
|
---|
| 146 | }
|
---|
[1044] | 147 | }
|
---|
| 148 | }
|
---|