1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | Redistribution and use in source and binary forms, with or without
|
---|
5 | modification, are permitted provided that the following conditions are
|
---|
6 | met:
|
---|
7 |
|
---|
8 | - Redistributions of source code must retain the above copyright
|
---|
9 | notice, this list of conditions and the following disclaimer.
|
---|
10 |
|
---|
11 | - Redistributions in binary form must reproduce the above copyright
|
---|
12 | notice, this list of conditions and the following disclaimer listed
|
---|
13 | in this license in the documentation and/or other materials
|
---|
14 | provided with the distribution.
|
---|
15 |
|
---|
16 | - Neither the name of the copyright holders nor the names of its
|
---|
17 | contributors may be used to endorse or promote products derived from
|
---|
18 | this software without specific prior written permission.
|
---|
19 |
|
---|
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
31 | *************************************************************************/
|
---|
32 |
|
---|
33 | using System;
|
---|
34 |
|
---|
35 | class spline3
|
---|
36 | {
|
---|
37 | /*************************************************************************
|
---|
38 | This subroutine builds linear spline coefficients table.
|
---|
39 |
|
---|
40 | Input parameters:
|
---|
41 | X - spline nodes, array[0..N-1]
|
---|
42 | Y - function values, array[0..N-1]
|
---|
43 | N - points count, N>=2
|
---|
44 |
|
---|
45 | Output parameters:
|
---|
46 | C - coefficients table. Used by SplineInterpolation and other
|
---|
47 | subroutines from this file.
|
---|
48 |
|
---|
49 | -- ALGLIB PROJECT --
|
---|
50 | Copyright 24.06.2007 by Bochkanov Sergey
|
---|
51 | *************************************************************************/
|
---|
52 | public static void buildlinearspline(double[] x,
|
---|
53 | double[] y,
|
---|
54 | int n,
|
---|
55 | ref double[] c)
|
---|
56 | {
|
---|
57 | int i = 0;
|
---|
58 | int tblsize = 0;
|
---|
59 |
|
---|
60 | x = (double[])x.Clone();
|
---|
61 | y = (double[])y.Clone();
|
---|
62 |
|
---|
63 | System.Diagnostics.Debug.Assert(n>=2, "BuildLinearSpline: N<2!");
|
---|
64 |
|
---|
65 | //
|
---|
66 | // Sort points
|
---|
67 | //
|
---|
68 | heapsortpoints(ref x, ref y, n);
|
---|
69 |
|
---|
70 | //
|
---|
71 | // Fill C:
|
---|
72 | // C[0] - length(C)
|
---|
73 | // C[1] - type(C):
|
---|
74 | // 3 - general cubic spline
|
---|
75 | // C[2] - N
|
---|
76 | // C[3]...C[3+N-1] - x[i], i = 0...N-1
|
---|
77 | // C[3+N]...C[3+N+(N-1)*4-1] - coefficients table
|
---|
78 | //
|
---|
79 | tblsize = 3+n+(n-1)*4;
|
---|
80 | c = new double[tblsize-1+1];
|
---|
81 | c[0] = tblsize;
|
---|
82 | c[1] = 3;
|
---|
83 | c[2] = n;
|
---|
84 | for(i=0; i<=n-1; i++)
|
---|
85 | {
|
---|
86 | c[3+i] = x[i];
|
---|
87 | }
|
---|
88 | for(i=0; i<=n-2; i++)
|
---|
89 | {
|
---|
90 | c[3+n+4*i+0] = y[i];
|
---|
91 | c[3+n+4*i+1] = (y[i+1]-y[i])/(x[i+1]-x[i]);
|
---|
92 | c[3+n+4*i+2] = 0;
|
---|
93 | c[3+n+4*i+3] = 0;
|
---|
94 | }
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | /*************************************************************************
|
---|
99 | This subroutine builds cubic spline coefficients table.
|
---|
100 |
|
---|
101 | Input parameters:
|
---|
102 | X - spline nodes, array[0..N-1]
|
---|
103 | Y - function values, array[0..N-1]
|
---|
104 | N - points count, N>=2
|
---|
105 | BoundLType - boundary condition type for the left boundary
|
---|
106 | BoundL - left boundary condition (first or second derivative,
|
---|
107 | depending on the BoundLType)
|
---|
108 | BoundRType - boundary condition type for the right boundary
|
---|
109 | BoundR - right boundary condition (first or second derivative,
|
---|
110 | depending on the BoundRType)
|
---|
111 |
|
---|
112 | Output parameters:
|
---|
113 | C - coefficients table. Used by SplineInterpolation and
|
---|
114 | other subroutines from this file.
|
---|
115 |
|
---|
116 | The BoundLType/BoundRType parameters can have the following values:
|
---|
117 | * 0, which corresponds to the parabolically terminated spline
|
---|
118 | (BoundL/BoundR are ignored).
|
---|
119 | * 1, which corresponds to the first derivative boundary condition
|
---|
120 | * 2, which corresponds to the second derivative boundary condition
|
---|
121 |
|
---|
122 | -- ALGLIB PROJECT --
|
---|
123 | Copyright 23.06.2007 by Bochkanov Sergey
|
---|
124 | *************************************************************************/
|
---|
125 | public static void buildcubicspline(double[] x,
|
---|
126 | double[] y,
|
---|
127 | int n,
|
---|
128 | int boundltype,
|
---|
129 | double boundl,
|
---|
130 | int boundrtype,
|
---|
131 | double boundr,
|
---|
132 | ref double[] c)
|
---|
133 | {
|
---|
134 | double[] a1 = new double[0];
|
---|
135 | double[] a2 = new double[0];
|
---|
136 | double[] a3 = new double[0];
|
---|
137 | double[] b = new double[0];
|
---|
138 | double[] d = new double[0];
|
---|
139 | int i = 0;
|
---|
140 | int tblsize = 0;
|
---|
141 | double delta = 0;
|
---|
142 | double delta2 = 0;
|
---|
143 | double delta3 = 0;
|
---|
144 |
|
---|
145 | x = (double[])x.Clone();
|
---|
146 | y = (double[])y.Clone();
|
---|
147 |
|
---|
148 | System.Diagnostics.Debug.Assert(n>=2, "BuildCubicSpline: N<2!");
|
---|
149 | System.Diagnostics.Debug.Assert(boundltype==0 | boundltype==1 | boundltype==2, "BuildCubicSpline: incorrect BoundLType!");
|
---|
150 | System.Diagnostics.Debug.Assert(boundrtype==0 | boundrtype==1 | boundrtype==2, "BuildCubicSpline: incorrect BoundRType!");
|
---|
151 | a1 = new double[n-1+1];
|
---|
152 | a2 = new double[n-1+1];
|
---|
153 | a3 = new double[n-1+1];
|
---|
154 | b = new double[n-1+1];
|
---|
155 |
|
---|
156 | //
|
---|
157 | // Special case:
|
---|
158 | // * N=2
|
---|
159 | // * parabolic terminated boundary condition on both ends
|
---|
160 | //
|
---|
161 | if( n==2 & boundltype==0 & boundrtype==0 )
|
---|
162 | {
|
---|
163 |
|
---|
164 | //
|
---|
165 | // Change task type
|
---|
166 | //
|
---|
167 | boundltype = 2;
|
---|
168 | boundl = 0;
|
---|
169 | boundrtype = 2;
|
---|
170 | boundr = 0;
|
---|
171 | }
|
---|
172 |
|
---|
173 | //
|
---|
174 | //
|
---|
175 | // Sort points
|
---|
176 | //
|
---|
177 | heapsortpoints(ref x, ref y, n);
|
---|
178 |
|
---|
179 | //
|
---|
180 | // Left boundary conditions
|
---|
181 | //
|
---|
182 | if( boundltype==0 )
|
---|
183 | {
|
---|
184 | a1[0] = 0;
|
---|
185 | a2[0] = 1;
|
---|
186 | a3[0] = 1;
|
---|
187 | b[0] = 2*(y[1]-y[0])/(x[1]-x[0]);
|
---|
188 | }
|
---|
189 | if( boundltype==1 )
|
---|
190 | {
|
---|
191 | a1[0] = 0;
|
---|
192 | a2[0] = 1;
|
---|
193 | a3[0] = 0;
|
---|
194 | b[0] = boundl;
|
---|
195 | }
|
---|
196 | if( boundltype==2 )
|
---|
197 | {
|
---|
198 | a1[0] = 0;
|
---|
199 | a2[0] = 2;
|
---|
200 | a3[0] = 1;
|
---|
201 | b[0] = 3*(y[1]-y[0])/(x[1]-x[0])-0.5*boundl*(x[1]-x[0]);
|
---|
202 | }
|
---|
203 |
|
---|
204 | //
|
---|
205 | // Central conditions
|
---|
206 | //
|
---|
207 | for(i=1; i<=n-2; i++)
|
---|
208 | {
|
---|
209 | a1[i] = x[i+1]-x[i];
|
---|
210 | a2[i] = 2*(x[i+1]-x[i-1]);
|
---|
211 | a3[i] = x[i]-x[i-1];
|
---|
212 | b[i] = 3*(y[i]-y[i-1])/(x[i]-x[i-1])*(x[i+1]-x[i])+3*(y[i+1]-y[i])/(x[i+1]-x[i])*(x[i]-x[i-1]);
|
---|
213 | }
|
---|
214 |
|
---|
215 | //
|
---|
216 | // Right boundary conditions
|
---|
217 | //
|
---|
218 | if( boundrtype==0 )
|
---|
219 | {
|
---|
220 | a1[n-1] = 1;
|
---|
221 | a2[n-1] = 1;
|
---|
222 | a3[n-1] = 0;
|
---|
223 | b[n-1] = 2*(y[n-1]-y[n-2])/(x[n-1]-x[n-2]);
|
---|
224 | }
|
---|
225 | if( boundrtype==1 )
|
---|
226 | {
|
---|
227 | a1[n-1] = 0;
|
---|
228 | a2[n-1] = 1;
|
---|
229 | a3[n-1] = 0;
|
---|
230 | b[n-1] = boundr;
|
---|
231 | }
|
---|
232 | if( boundrtype==2 )
|
---|
233 | {
|
---|
234 | a1[n-1] = 1;
|
---|
235 | a2[n-1] = 2;
|
---|
236 | a3[n-1] = 0;
|
---|
237 | b[n-1] = 3*(y[n-1]-y[n-2])/(x[n-1]-x[n-2])+0.5*boundr*(x[n-1]-x[n-2]);
|
---|
238 | }
|
---|
239 |
|
---|
240 | //
|
---|
241 | // Solve
|
---|
242 | //
|
---|
243 | solvetridiagonal(a1, a2, a3, b, n, ref d);
|
---|
244 |
|
---|
245 | //
|
---|
246 | // Now problem is reduced to the cubic Hermite spline
|
---|
247 | //
|
---|
248 | buildhermitespline(x, y, d, n, ref c);
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | /*************************************************************************
|
---|
253 | This subroutine builds cubic Hermite spline coefficients table.
|
---|
254 |
|
---|
255 | Input parameters:
|
---|
256 | X - spline nodes, array[0..N-1]
|
---|
257 | Y - function values, array[0..N-1]
|
---|
258 | D - derivatives, array[0..N-1]
|
---|
259 | N - points count, N>=2
|
---|
260 |
|
---|
261 | Output parameters:
|
---|
262 | C - coefficients table. Used by SplineInterpolation and
|
---|
263 | other subroutines from this file.
|
---|
264 |
|
---|
265 | -- ALGLIB PROJECT --
|
---|
266 | Copyright 23.06.2007 by Bochkanov Sergey
|
---|
267 | *************************************************************************/
|
---|
268 | public static void buildhermitespline(double[] x,
|
---|
269 | double[] y,
|
---|
270 | double[] d,
|
---|
271 | int n,
|
---|
272 | ref double[] c)
|
---|
273 | {
|
---|
274 | int i = 0;
|
---|
275 | int tblsize = 0;
|
---|
276 | double delta = 0;
|
---|
277 | double delta2 = 0;
|
---|
278 | double delta3 = 0;
|
---|
279 |
|
---|
280 | x = (double[])x.Clone();
|
---|
281 | y = (double[])y.Clone();
|
---|
282 | d = (double[])d.Clone();
|
---|
283 |
|
---|
284 | System.Diagnostics.Debug.Assert(n>=2, "BuildHermiteSpline: N<2!");
|
---|
285 |
|
---|
286 | //
|
---|
287 | // Sort points
|
---|
288 | //
|
---|
289 | heapsortdpoints(ref x, ref y, ref d, n);
|
---|
290 |
|
---|
291 | //
|
---|
292 | // Fill C:
|
---|
293 | // C[0] - length(C)
|
---|
294 | // C[1] - type(C):
|
---|
295 | // 3 - general cubic spline
|
---|
296 | // C[2] - N
|
---|
297 | // C[3]...C[3+N-1] - x[i], i = 0...N-1
|
---|
298 | // C[3+N]...C[3+N+(N-1)*4-1] - coefficients table
|
---|
299 | //
|
---|
300 | tblsize = 3+n+(n-1)*4;
|
---|
301 | c = new double[tblsize-1+1];
|
---|
302 | c[0] = tblsize;
|
---|
303 | c[1] = 3;
|
---|
304 | c[2] = n;
|
---|
305 | for(i=0; i<=n-1; i++)
|
---|
306 | {
|
---|
307 | c[3+i] = x[i];
|
---|
308 | }
|
---|
309 | for(i=0; i<=n-2; i++)
|
---|
310 | {
|
---|
311 | delta = x[i+1]-x[i];
|
---|
312 | delta2 = AP.Math.Sqr(delta);
|
---|
313 | delta3 = delta*delta2;
|
---|
314 | c[3+n+4*i+0] = y[i];
|
---|
315 | c[3+n+4*i+1] = d[i];
|
---|
316 | c[3+n+4*i+2] = (3*(y[i+1]-y[i])-2*d[i]*delta-d[i+1]*delta)/delta2;
|
---|
317 | c[3+n+4*i+3] = (2*(y[i]-y[i+1])+d[i]*delta+d[i+1]*delta)/delta3;
|
---|
318 | }
|
---|
319 | }
|
---|
320 |
|
---|
321 |
|
---|
322 | /*************************************************************************
|
---|
323 | This subroutine builds Akima spline coefficients table.
|
---|
324 |
|
---|
325 | Input parameters:
|
---|
326 | X - spline nodes, array[0..N-1]
|
---|
327 | Y - function values, array[0..N-1]
|
---|
328 | N - points count, N>=5
|
---|
329 |
|
---|
330 | Output parameters:
|
---|
331 | C - coefficients table. Used by SplineInterpolation and
|
---|
332 | other subroutines from this file.
|
---|
333 |
|
---|
334 | -- ALGLIB PROJECT --
|
---|
335 | Copyright 24.06.2007 by Bochkanov Sergey
|
---|
336 | *************************************************************************/
|
---|
337 | public static void buildakimaspline(double[] x,
|
---|
338 | double[] y,
|
---|
339 | int n,
|
---|
340 | ref double[] c)
|
---|
341 | {
|
---|
342 | int i = 0;
|
---|
343 | double[] d = new double[0];
|
---|
344 | double[] w = new double[0];
|
---|
345 | double[] diff = new double[0];
|
---|
346 |
|
---|
347 | x = (double[])x.Clone();
|
---|
348 | y = (double[])y.Clone();
|
---|
349 |
|
---|
350 | System.Diagnostics.Debug.Assert(n>=5, "BuildAkimaSpline: N<5!");
|
---|
351 |
|
---|
352 | //
|
---|
353 | // Sort points
|
---|
354 | //
|
---|
355 | heapsortpoints(ref x, ref y, n);
|
---|
356 |
|
---|
357 | //
|
---|
358 | // Prepare W (weights), Diff (divided differences)
|
---|
359 | //
|
---|
360 | w = new double[n-2+1];
|
---|
361 | diff = new double[n-2+1];
|
---|
362 | for(i=0; i<=n-2; i++)
|
---|
363 | {
|
---|
364 | diff[i] = (y[i+1]-y[i])/(x[i+1]-x[i]);
|
---|
365 | }
|
---|
366 | for(i=1; i<=n-2; i++)
|
---|
367 | {
|
---|
368 | w[i] = Math.Abs(diff[i]-diff[i-1]);
|
---|
369 | }
|
---|
370 |
|
---|
371 | //
|
---|
372 | // Prepare Hermite interpolation scheme
|
---|
373 | //
|
---|
374 | d = new double[n-1+1];
|
---|
375 | for(i=2; i<=n-3; i++)
|
---|
376 | {
|
---|
377 | if( Math.Abs(w[i-1])+Math.Abs(w[i+1])!=0 )
|
---|
378 | {
|
---|
379 | d[i] = (w[i+1]*diff[i-1]+w[i-1]*diff[i])/(w[i+1]+w[i-1]);
|
---|
380 | }
|
---|
381 | else
|
---|
382 | {
|
---|
383 | d[i] = ((x[i+1]-x[i])*diff[i-1]+(x[i]-x[i-1])*diff[i])/(x[i+1]-x[i-1]);
|
---|
384 | }
|
---|
385 | }
|
---|
386 | d[0] = diffthreepoint(x[0], x[0], y[0], x[1], y[1], x[2], y[2]);
|
---|
387 | d[1] = diffthreepoint(x[1], x[0], y[0], x[1], y[1], x[2], y[2]);
|
---|
388 | d[n-2] = diffthreepoint(x[n-2], x[n-3], y[n-3], x[n-2], y[n-2], x[n-1], y[n-1]);
|
---|
389 | d[n-1] = diffthreepoint(x[n-1], x[n-3], y[n-3], x[n-2], y[n-2], x[n-1], y[n-1]);
|
---|
390 |
|
---|
391 | //
|
---|
392 | // Build Akima spline using Hermite interpolation scheme
|
---|
393 | //
|
---|
394 | buildhermitespline(x, y, d, n, ref c);
|
---|
395 | }
|
---|
396 |
|
---|
397 |
|
---|
398 | /*************************************************************************
|
---|
399 | This subroutine calculates the value of the spline at the given point X.
|
---|
400 |
|
---|
401 | Input parameters:
|
---|
402 | C - coefficients table. Built by BuildLinearSpline,
|
---|
403 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
404 | X - point
|
---|
405 |
|
---|
406 | Result:
|
---|
407 | S(x)
|
---|
408 |
|
---|
409 | -- ALGLIB PROJECT --
|
---|
410 | Copyright 23.06.2007 by Bochkanov Sergey
|
---|
411 | *************************************************************************/
|
---|
412 | public static double splineinterpolation(ref double[] c,
|
---|
413 | double x)
|
---|
414 | {
|
---|
415 | double result = 0;
|
---|
416 | int n = 0;
|
---|
417 | int l = 0;
|
---|
418 | int r = 0;
|
---|
419 | int m = 0;
|
---|
420 |
|
---|
421 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineInterpolation: incorrect C!");
|
---|
422 | n = (int)Math.Round(c[2]);
|
---|
423 |
|
---|
424 | //
|
---|
425 | // Binary search in the [ x[0], ..., x[n-2] ] (x[n-1] is not included)
|
---|
426 | //
|
---|
427 | l = 3;
|
---|
428 | r = 3+n-2+1;
|
---|
429 | while( l!=r-1 )
|
---|
430 | {
|
---|
431 | m = (l+r)/2;
|
---|
432 | if( c[m]>=x )
|
---|
433 | {
|
---|
434 | r = m;
|
---|
435 | }
|
---|
436 | else
|
---|
437 | {
|
---|
438 | l = m;
|
---|
439 | }
|
---|
440 | }
|
---|
441 |
|
---|
442 | //
|
---|
443 | // Interpolation
|
---|
444 | //
|
---|
445 | x = x-c[l];
|
---|
446 | m = 3+n+4*(l-3);
|
---|
447 | result = c[m]+x*(c[m+1]+x*(c[m+2]+x*c[m+3]));
|
---|
448 | return result;
|
---|
449 | }
|
---|
450 |
|
---|
451 |
|
---|
452 | /*************************************************************************
|
---|
453 | This subroutine differentiates the spline.
|
---|
454 |
|
---|
455 | Input parameters:
|
---|
456 | C - coefficients table. Built by BuildLinearSpline,
|
---|
457 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
458 | X - point
|
---|
459 |
|
---|
460 | Result:
|
---|
461 | S - S(x)
|
---|
462 | DS - S'(x)
|
---|
463 | D2S - S''(x)
|
---|
464 |
|
---|
465 | -- ALGLIB PROJECT --
|
---|
466 | Copyright 24.06.2007 by Bochkanov Sergey
|
---|
467 | *************************************************************************/
|
---|
468 | public static void splinedifferentiation(ref double[] c,
|
---|
469 | double x,
|
---|
470 | ref double s,
|
---|
471 | ref double ds,
|
---|
472 | ref double d2s)
|
---|
473 | {
|
---|
474 | int n = 0;
|
---|
475 | int l = 0;
|
---|
476 | int r = 0;
|
---|
477 | int m = 0;
|
---|
478 |
|
---|
479 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineInterpolation: incorrect C!");
|
---|
480 | n = (int)Math.Round(c[2]);
|
---|
481 |
|
---|
482 | //
|
---|
483 | // Binary search
|
---|
484 | //
|
---|
485 | l = 3;
|
---|
486 | r = 3+n-2+1;
|
---|
487 | while( l!=r-1 )
|
---|
488 | {
|
---|
489 | m = (l+r)/2;
|
---|
490 | if( c[m]>=x )
|
---|
491 | {
|
---|
492 | r = m;
|
---|
493 | }
|
---|
494 | else
|
---|
495 | {
|
---|
496 | l = m;
|
---|
497 | }
|
---|
498 | }
|
---|
499 |
|
---|
500 | //
|
---|
501 | // Differentiation
|
---|
502 | //
|
---|
503 | x = x-c[l];
|
---|
504 | m = 3+n+4*(l-3);
|
---|
505 | s = c[m]+x*(c[m+1]+x*(c[m+2]+x*c[m+3]));
|
---|
506 | ds = c[m+1]+2*x*c[m+2]+3*AP.Math.Sqr(x)*c[m+3];
|
---|
507 | d2s = 2*c[m+2]+6*x*c[m+3];
|
---|
508 | }
|
---|
509 |
|
---|
510 |
|
---|
511 | /*************************************************************************
|
---|
512 | This subroutine makes the copy of the spline.
|
---|
513 |
|
---|
514 | Input parameters:
|
---|
515 | C - coefficients table. Built by BuildLinearSpline,
|
---|
516 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
517 |
|
---|
518 | Result:
|
---|
519 | CC - spline copy
|
---|
520 |
|
---|
521 | -- ALGLIB PROJECT --
|
---|
522 | Copyright 29.06.2007 by Bochkanov Sergey
|
---|
523 | *************************************************************************/
|
---|
524 | public static void splinecopy(ref double[] c,
|
---|
525 | ref double[] cc)
|
---|
526 | {
|
---|
527 | int s = 0;
|
---|
528 | int i_ = 0;
|
---|
529 |
|
---|
530 | s = (int)Math.Round(c[0]);
|
---|
531 | cc = new double[s-1+1];
|
---|
532 | for(i_=0; i_<=s-1;i_++)
|
---|
533 | {
|
---|
534 | cc[i_] = c[i_];
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /*************************************************************************
|
---|
540 | This subroutine unpacks the spline into the coefficients table.
|
---|
541 |
|
---|
542 | Input parameters:
|
---|
543 | C - coefficients table. Built by BuildLinearSpline,
|
---|
544 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
545 | X - point
|
---|
546 |
|
---|
547 | Result:
|
---|
548 | Tbl - coefficients table, unpacked format, array[0..N-2, 0..5].
|
---|
549 | For I = 0...N-2:
|
---|
550 | Tbl[I,0] = X[i]
|
---|
551 | Tbl[I,1] = X[i+1]
|
---|
552 | Tbl[I,2] = C0
|
---|
553 | Tbl[I,3] = C1
|
---|
554 | Tbl[I,4] = C2
|
---|
555 | Tbl[I,5] = C3
|
---|
556 | On [x[i], x[i+1]] spline is equals to:
|
---|
557 | S(x) = C0 + C1*t + C2*t^2 + C3*t^3
|
---|
558 | t = x-x[i]
|
---|
559 |
|
---|
560 | -- ALGLIB PROJECT --
|
---|
561 | Copyright 29.06.2007 by Bochkanov Sergey
|
---|
562 | *************************************************************************/
|
---|
563 | public static void splineunpack(ref double[] c,
|
---|
564 | ref int n,
|
---|
565 | ref double[,] tbl)
|
---|
566 | {
|
---|
567 | int i = 0;
|
---|
568 |
|
---|
569 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineUnpack: incorrect C!");
|
---|
570 | n = (int)Math.Round(c[2]);
|
---|
571 | tbl = new double[n-2+1, 5+1];
|
---|
572 |
|
---|
573 | //
|
---|
574 | // Fill
|
---|
575 | //
|
---|
576 | for(i=0; i<=n-2; i++)
|
---|
577 | {
|
---|
578 | tbl[i,0] = c[3+i];
|
---|
579 | tbl[i,1] = c[3+i+1];
|
---|
580 | tbl[i,2] = c[3+n+4*i];
|
---|
581 | tbl[i,3] = c[3+n+4*i+1];
|
---|
582 | tbl[i,4] = c[3+n+4*i+2];
|
---|
583 | tbl[i,5] = c[3+n+4*i+3];
|
---|
584 | }
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | /*************************************************************************
|
---|
589 | This subroutine performs linear transformation of the spline argument.
|
---|
590 |
|
---|
591 | Input parameters:
|
---|
592 | C - coefficients table. Built by BuildLinearSpline,
|
---|
593 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
594 | A, B- transformation coefficients: x = A*t + B
|
---|
595 | Result:
|
---|
596 | C - transformed spline
|
---|
597 |
|
---|
598 | -- ALGLIB PROJECT --
|
---|
599 | Copyright 30.06.2007 by Bochkanov Sergey
|
---|
600 | *************************************************************************/
|
---|
601 | public static void splinelintransx(ref double[] c,
|
---|
602 | double a,
|
---|
603 | double b)
|
---|
604 | {
|
---|
605 | int i = 0;
|
---|
606 | int n = 0;
|
---|
607 | double v = 0;
|
---|
608 | double dv = 0;
|
---|
609 | double d2v = 0;
|
---|
610 | double[] x = new double[0];
|
---|
611 | double[] y = new double[0];
|
---|
612 | double[] d = new double[0];
|
---|
613 |
|
---|
614 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineLinTransX: incorrect C!");
|
---|
615 | n = (int)Math.Round(c[2]);
|
---|
616 |
|
---|
617 | //
|
---|
618 | // Special case: A=0
|
---|
619 | //
|
---|
620 | if( a==0 )
|
---|
621 | {
|
---|
622 | v = splineinterpolation(ref c, b);
|
---|
623 | for(i=0; i<=n-2; i++)
|
---|
624 | {
|
---|
625 | c[3+n+4*i] = v;
|
---|
626 | c[3+n+4*i+1] = 0;
|
---|
627 | c[3+n+4*i+2] = 0;
|
---|
628 | c[3+n+4*i+3] = 0;
|
---|
629 | }
|
---|
630 | return;
|
---|
631 | }
|
---|
632 |
|
---|
633 | //
|
---|
634 | // General case: A<>0.
|
---|
635 | // Unpack, X, Y, dY/dX.
|
---|
636 | // Scale and pack again.
|
---|
637 | //
|
---|
638 | x = new double[n-1+1];
|
---|
639 | y = new double[n-1+1];
|
---|
640 | d = new double[n-1+1];
|
---|
641 | for(i=0; i<=n-1; i++)
|
---|
642 | {
|
---|
643 | x[i] = c[3+i];
|
---|
644 | splinedifferentiation(ref c, x[i], ref v, ref dv, ref d2v);
|
---|
645 | x[i] = (x[i]-b)/a;
|
---|
646 | y[i] = v;
|
---|
647 | d[i] = a*dv;
|
---|
648 | }
|
---|
649 | buildhermitespline(x, y, d, n, ref c);
|
---|
650 | }
|
---|
651 |
|
---|
652 |
|
---|
653 | /*************************************************************************
|
---|
654 | This subroutine performs linear transformation of the spline.
|
---|
655 |
|
---|
656 | Input parameters:
|
---|
657 | C - coefficients table. Built by BuildLinearSpline,
|
---|
658 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
659 | A, B- transformation coefficients: S2(x) = A*S(x) + B
|
---|
660 | Result:
|
---|
661 | C - transformed spline
|
---|
662 |
|
---|
663 | -- ALGLIB PROJECT --
|
---|
664 | Copyright 30.06.2007 by Bochkanov Sergey
|
---|
665 | *************************************************************************/
|
---|
666 | public static void splinelintransy(ref double[] c,
|
---|
667 | double a,
|
---|
668 | double b)
|
---|
669 | {
|
---|
670 | int i = 0;
|
---|
671 | int n = 0;
|
---|
672 | double v = 0;
|
---|
673 | double dv = 0;
|
---|
674 | double d2v = 0;
|
---|
675 | double[] x = new double[0];
|
---|
676 | double[] y = new double[0];
|
---|
677 | double[] d = new double[0];
|
---|
678 |
|
---|
679 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineLinTransX: incorrect C!");
|
---|
680 | n = (int)Math.Round(c[2]);
|
---|
681 |
|
---|
682 | //
|
---|
683 | // Special case: A=0
|
---|
684 | //
|
---|
685 | for(i=0; i<=n-2; i++)
|
---|
686 | {
|
---|
687 | c[3+n+4*i] = a*c[3+n+4*i]+b;
|
---|
688 | c[3+n+4*i+1] = a*c[3+n+4*i+1];
|
---|
689 | c[3+n+4*i+2] = a*c[3+n+4*i+2];
|
---|
690 | c[3+n+4*i+3] = a*c[3+n+4*i+3];
|
---|
691 | }
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | /*************************************************************************
|
---|
696 | This subroutine integrates the spline.
|
---|
697 |
|
---|
698 | Input parameters:
|
---|
699 | C - coefficients table. Built by BuildLinearSpline,
|
---|
700 | BuildHermiteSpline, BuildCubicSpline, BuildAkimaSpline.
|
---|
701 | X - right bound of the integration interval [a, x]
|
---|
702 | Result:
|
---|
703 | integral(S(t)dt,a,x)
|
---|
704 |
|
---|
705 | -- ALGLIB PROJECT --
|
---|
706 | Copyright 23.06.2007 by Bochkanov Sergey
|
---|
707 | *************************************************************************/
|
---|
708 | public static double splineintegration(ref double[] c,
|
---|
709 | double x)
|
---|
710 | {
|
---|
711 | double result = 0;
|
---|
712 | int n = 0;
|
---|
713 | int i = 0;
|
---|
714 | int l = 0;
|
---|
715 | int r = 0;
|
---|
716 | int m = 0;
|
---|
717 | double w = 0;
|
---|
718 |
|
---|
719 | System.Diagnostics.Debug.Assert((int)Math.Round(c[1])==3, "SplineIntegration: incorrect C!");
|
---|
720 | n = (int)Math.Round(c[2]);
|
---|
721 |
|
---|
722 | //
|
---|
723 | // Binary search in the [ x[0], ..., x[n-2] ] (x[n-1] is not included)
|
---|
724 | //
|
---|
725 | l = 3;
|
---|
726 | r = 3+n-2+1;
|
---|
727 | while( l!=r-1 )
|
---|
728 | {
|
---|
729 | m = (l+r)/2;
|
---|
730 | if( c[m]>=x )
|
---|
731 | {
|
---|
732 | r = m;
|
---|
733 | }
|
---|
734 | else
|
---|
735 | {
|
---|
736 | l = m;
|
---|
737 | }
|
---|
738 | }
|
---|
739 |
|
---|
740 | //
|
---|
741 | // Integration
|
---|
742 | //
|
---|
743 | result = 0;
|
---|
744 | for(i=3; i<=l-1; i++)
|
---|
745 | {
|
---|
746 | w = c[i+1]-c[i];
|
---|
747 | m = 3+n+4*(i-3);
|
---|
748 | result = result+c[m]*w;
|
---|
749 | result = result+c[m+1]*AP.Math.Sqr(w)/2;
|
---|
750 | result = result+c[m+2]*AP.Math.Sqr(w)*w/3;
|
---|
751 | result = result+c[m+3]*AP.Math.Sqr(AP.Math.Sqr(w))/4;
|
---|
752 | }
|
---|
753 | w = x-c[l];
|
---|
754 | m = 3+n+4*(l-3);
|
---|
755 | result = result+c[m]*w;
|
---|
756 | result = result+c[m+1]*AP.Math.Sqr(w)/2;
|
---|
757 | result = result+c[m+2]*AP.Math.Sqr(w)*w/3;
|
---|
758 | result = result+c[m+3]*AP.Math.Sqr(AP.Math.Sqr(w))/4;
|
---|
759 | return result;
|
---|
760 | }
|
---|
761 |
|
---|
762 |
|
---|
763 | /*************************************************************************
|
---|
764 | Obsolete subroutine, left for backward compatibility.
|
---|
765 | *************************************************************************/
|
---|
766 | public static void spline3buildtable(int n,
|
---|
767 | int diffn,
|
---|
768 | double[] x,
|
---|
769 | double[] y,
|
---|
770 | double boundl,
|
---|
771 | double boundr,
|
---|
772 | ref double[,] ctbl)
|
---|
773 | {
|
---|
774 | bool c = new bool();
|
---|
775 | int e = 0;
|
---|
776 | int g = 0;
|
---|
777 | double tmp = 0;
|
---|
778 | int nxm1 = 0;
|
---|
779 | int i = 0;
|
---|
780 | int j = 0;
|
---|
781 | double dx = 0;
|
---|
782 | double dxj = 0;
|
---|
783 | double dyj = 0;
|
---|
784 | double dxjp1 = 0;
|
---|
785 | double dyjp1 = 0;
|
---|
786 | double dxp = 0;
|
---|
787 | double dyp = 0;
|
---|
788 | double yppa = 0;
|
---|
789 | double yppb = 0;
|
---|
790 | double pj = 0;
|
---|
791 | double b1 = 0;
|
---|
792 | double b2 = 0;
|
---|
793 | double b3 = 0;
|
---|
794 | double b4 = 0;
|
---|
795 |
|
---|
796 | x = (double[])x.Clone();
|
---|
797 | y = (double[])y.Clone();
|
---|
798 |
|
---|
799 | n = n-1;
|
---|
800 | g = (n+1)/2;
|
---|
801 | do
|
---|
802 | {
|
---|
803 | i = g;
|
---|
804 | do
|
---|
805 | {
|
---|
806 | j = i-g;
|
---|
807 | c = true;
|
---|
808 | do
|
---|
809 | {
|
---|
810 | if( x[j]<=x[j+g] )
|
---|
811 | {
|
---|
812 | c = false;
|
---|
813 | }
|
---|
814 | else
|
---|
815 | {
|
---|
816 | tmp = x[j];
|
---|
817 | x[j] = x[j+g];
|
---|
818 | x[j+g] = tmp;
|
---|
819 | tmp = y[j];
|
---|
820 | y[j] = y[j+g];
|
---|
821 | y[j+g] = tmp;
|
---|
822 | }
|
---|
823 | j = j-1;
|
---|
824 | }
|
---|
825 | while( j>=0 & c );
|
---|
826 | i = i+1;
|
---|
827 | }
|
---|
828 | while( i<=n );
|
---|
829 | g = g/2;
|
---|
830 | }
|
---|
831 | while( g>0 );
|
---|
832 | ctbl = new double[4+1, n+1];
|
---|
833 | n = n+1;
|
---|
834 | if( diffn==1 )
|
---|
835 | {
|
---|
836 | b1 = 1;
|
---|
837 | b2 = 6/(x[1]-x[0])*((y[1]-y[0])/(x[1]-x[0])-boundl);
|
---|
838 | b3 = 1;
|
---|
839 | b4 = 6/(x[n-1]-x[n-2])*(boundr-(y[n-1]-y[n-2])/(x[n-1]-x[n-2]));
|
---|
840 | }
|
---|
841 | else
|
---|
842 | {
|
---|
843 | b1 = 0;
|
---|
844 | b2 = 2*boundl;
|
---|
845 | b3 = 0;
|
---|
846 | b4 = 2*boundr;
|
---|
847 | }
|
---|
848 | nxm1 = n-1;
|
---|
849 | if( n>=2 )
|
---|
850 | {
|
---|
851 | if( n>2 )
|
---|
852 | {
|
---|
853 | dxj = x[1]-x[0];
|
---|
854 | dyj = y[1]-y[0];
|
---|
855 | j = 2;
|
---|
856 | while( j<=nxm1 )
|
---|
857 | {
|
---|
858 | dxjp1 = x[j]-x[j-1];
|
---|
859 | dyjp1 = y[j]-y[j-1];
|
---|
860 | dxp = dxj+dxjp1;
|
---|
861 | ctbl[1,j-1] = dxjp1/dxp;
|
---|
862 | ctbl[2,j-1] = 1-ctbl[1,j-1];
|
---|
863 | ctbl[3,j-1] = 6*(dyjp1/dxjp1-dyj/dxj)/dxp;
|
---|
864 | dxj = dxjp1;
|
---|
865 | dyj = dyjp1;
|
---|
866 | j = j+1;
|
---|
867 | }
|
---|
868 | }
|
---|
869 | ctbl[1,0] = -(b1/2);
|
---|
870 | ctbl[2,0] = b2/2;
|
---|
871 | if( n!=2 )
|
---|
872 | {
|
---|
873 | j = 2;
|
---|
874 | while( j<=nxm1 )
|
---|
875 | {
|
---|
876 | pj = ctbl[2,j-1]*ctbl[1,j-2]+2;
|
---|
877 | ctbl[1,j-1] = -(ctbl[1,j-1]/pj);
|
---|
878 | ctbl[2,j-1] = (ctbl[3,j-1]-ctbl[2,j-1]*ctbl[2,j-2])/pj;
|
---|
879 | j = j+1;
|
---|
880 | }
|
---|
881 | }
|
---|
882 | yppb = (b4-b3*ctbl[2,nxm1-1])/(b3*ctbl[1,nxm1-1]+2);
|
---|
883 | i = 1;
|
---|
884 | while( i<=nxm1 )
|
---|
885 | {
|
---|
886 | j = n-i;
|
---|
887 | yppa = ctbl[1,j-1]*yppb+ctbl[2,j-1];
|
---|
888 | dx = x[j]-x[j-1];
|
---|
889 | ctbl[3,j-1] = (yppb-yppa)/dx/6;
|
---|
890 | ctbl[2,j-1] = yppa/2;
|
---|
891 | ctbl[1,j-1] = (y[j]-y[j-1])/dx-(ctbl[2,j-1]+ctbl[3,j-1]*dx)*dx;
|
---|
892 | yppb = yppa;
|
---|
893 | i = i+1;
|
---|
894 | }
|
---|
895 | for(i=1; i<=n; i++)
|
---|
896 | {
|
---|
897 | ctbl[0,i-1] = y[i-1];
|
---|
898 | ctbl[4,i-1] = x[i-1];
|
---|
899 | }
|
---|
900 | }
|
---|
901 | }
|
---|
902 |
|
---|
903 |
|
---|
904 | /*************************************************************************
|
---|
905 | Obsolete subroutine, left for backward compatibility.
|
---|
906 | *************************************************************************/
|
---|
907 | public static double spline3interpolate(int n,
|
---|
908 | ref double[,] c,
|
---|
909 | double x)
|
---|
910 | {
|
---|
911 | double result = 0;
|
---|
912 | int i = 0;
|
---|
913 | int l = 0;
|
---|
914 | int half = 0;
|
---|
915 | int first = 0;
|
---|
916 | int middle = 0;
|
---|
917 |
|
---|
918 | n = n-1;
|
---|
919 | l = n;
|
---|
920 | first = 0;
|
---|
921 | while( l>0 )
|
---|
922 | {
|
---|
923 | half = l/2;
|
---|
924 | middle = first+half;
|
---|
925 | if( c[4,middle]<x )
|
---|
926 | {
|
---|
927 | first = middle+1;
|
---|
928 | l = l-half-1;
|
---|
929 | }
|
---|
930 | else
|
---|
931 | {
|
---|
932 | l = half;
|
---|
933 | }
|
---|
934 | }
|
---|
935 | i = first-1;
|
---|
936 | if( i<0 )
|
---|
937 | {
|
---|
938 | i = 0;
|
---|
939 | }
|
---|
940 | result = c[0,i]+(x-c[4,i])*(c[1,i]+(x-c[4,i])*(c[2,i]+c[3,i]*(x-c[4,i])));
|
---|
941 | return result;
|
---|
942 | }
|
---|
943 |
|
---|
944 |
|
---|
945 | /*************************************************************************
|
---|
946 | Internal subroutine. Heap sort.
|
---|
947 | *************************************************************************/
|
---|
948 | private static void heapsortpoints(ref double[] x,
|
---|
949 | ref double[] y,
|
---|
950 | int n)
|
---|
951 | {
|
---|
952 | int i = 0;
|
---|
953 | int j = 0;
|
---|
954 | int k = 0;
|
---|
955 | int t = 0;
|
---|
956 | double tmp = 0;
|
---|
957 | bool isascending = new bool();
|
---|
958 | bool isdescending = new bool();
|
---|
959 |
|
---|
960 |
|
---|
961 | //
|
---|
962 | // Test for already sorted set
|
---|
963 | //
|
---|
964 | isascending = true;
|
---|
965 | isdescending = true;
|
---|
966 | for(i=1; i<=n-1; i++)
|
---|
967 | {
|
---|
968 | isascending = isascending & x[i]>x[i-1];
|
---|
969 | isdescending = isdescending & x[i]<x[i-1];
|
---|
970 | }
|
---|
971 | if( isascending )
|
---|
972 | {
|
---|
973 | return;
|
---|
974 | }
|
---|
975 | if( isdescending )
|
---|
976 | {
|
---|
977 | for(i=0; i<=n-1; i++)
|
---|
978 | {
|
---|
979 | j = n-1-i;
|
---|
980 | if( j<=i )
|
---|
981 | {
|
---|
982 | break;
|
---|
983 | }
|
---|
984 | tmp = x[i];
|
---|
985 | x[i] = x[j];
|
---|
986 | x[j] = tmp;
|
---|
987 | tmp = y[i];
|
---|
988 | y[i] = y[j];
|
---|
989 | y[j] = tmp;
|
---|
990 | }
|
---|
991 | return;
|
---|
992 | }
|
---|
993 |
|
---|
994 | //
|
---|
995 | // Special case: N=1
|
---|
996 | //
|
---|
997 | if( n==1 )
|
---|
998 | {
|
---|
999 | return;
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | //
|
---|
1003 | // General case
|
---|
1004 | //
|
---|
1005 | i = 2;
|
---|
1006 | do
|
---|
1007 | {
|
---|
1008 | t = i;
|
---|
1009 | while( t!=1 )
|
---|
1010 | {
|
---|
1011 | k = t/2;
|
---|
1012 | if( x[k-1]>=x[t-1] )
|
---|
1013 | {
|
---|
1014 | t = 1;
|
---|
1015 | }
|
---|
1016 | else
|
---|
1017 | {
|
---|
1018 | tmp = x[k-1];
|
---|
1019 | x[k-1] = x[t-1];
|
---|
1020 | x[t-1] = tmp;
|
---|
1021 | tmp = y[k-1];
|
---|
1022 | y[k-1] = y[t-1];
|
---|
1023 | y[t-1] = tmp;
|
---|
1024 | t = k;
|
---|
1025 | }
|
---|
1026 | }
|
---|
1027 | i = i+1;
|
---|
1028 | }
|
---|
1029 | while( i<=n );
|
---|
1030 | i = n-1;
|
---|
1031 | do
|
---|
1032 | {
|
---|
1033 | tmp = x[i];
|
---|
1034 | x[i] = x[0];
|
---|
1035 | x[0] = tmp;
|
---|
1036 | tmp = y[i];
|
---|
1037 | y[i] = y[0];
|
---|
1038 | y[0] = tmp;
|
---|
1039 | t = 1;
|
---|
1040 | while( t!=0 )
|
---|
1041 | {
|
---|
1042 | k = 2*t;
|
---|
1043 | if( k>i )
|
---|
1044 | {
|
---|
1045 | t = 0;
|
---|
1046 | }
|
---|
1047 | else
|
---|
1048 | {
|
---|
1049 | if( k<i )
|
---|
1050 | {
|
---|
1051 | if( x[k]>x[k-1] )
|
---|
1052 | {
|
---|
1053 | k = k+1;
|
---|
1054 | }
|
---|
1055 | }
|
---|
1056 | if( x[t-1]>=x[k-1] )
|
---|
1057 | {
|
---|
1058 | t = 0;
|
---|
1059 | }
|
---|
1060 | else
|
---|
1061 | {
|
---|
1062 | tmp = x[k-1];
|
---|
1063 | x[k-1] = x[t-1];
|
---|
1064 | x[t-1] = tmp;
|
---|
1065 | tmp = y[k-1];
|
---|
1066 | y[k-1] = y[t-1];
|
---|
1067 | y[t-1] = tmp;
|
---|
1068 | t = k;
|
---|
1069 | }
|
---|
1070 | }
|
---|
1071 | }
|
---|
1072 | i = i-1;
|
---|
1073 | }
|
---|
1074 | while( i>=1 );
|
---|
1075 | }
|
---|
1076 |
|
---|
1077 |
|
---|
1078 | /*************************************************************************
|
---|
1079 | Internal subroutine. Heap sort.
|
---|
1080 | *************************************************************************/
|
---|
1081 | private static void heapsortdpoints(ref double[] x,
|
---|
1082 | ref double[] y,
|
---|
1083 | ref double[] d,
|
---|
1084 | int n)
|
---|
1085 | {
|
---|
1086 | int i = 0;
|
---|
1087 | int j = 0;
|
---|
1088 | int k = 0;
|
---|
1089 | int t = 0;
|
---|
1090 | double tmp = 0;
|
---|
1091 | bool isascending = new bool();
|
---|
1092 | bool isdescending = new bool();
|
---|
1093 |
|
---|
1094 |
|
---|
1095 | //
|
---|
1096 | // Test for already sorted set
|
---|
1097 | //
|
---|
1098 | isascending = true;
|
---|
1099 | isdescending = true;
|
---|
1100 | for(i=1; i<=n-1; i++)
|
---|
1101 | {
|
---|
1102 | isascending = isascending & x[i]>x[i-1];
|
---|
1103 | isdescending = isdescending & x[i]<x[i-1];
|
---|
1104 | }
|
---|
1105 | if( isascending )
|
---|
1106 | {
|
---|
1107 | return;
|
---|
1108 | }
|
---|
1109 | if( isdescending )
|
---|
1110 | {
|
---|
1111 | for(i=0; i<=n-1; i++)
|
---|
1112 | {
|
---|
1113 | j = n-1-i;
|
---|
1114 | if( j<=i )
|
---|
1115 | {
|
---|
1116 | break;
|
---|
1117 | }
|
---|
1118 | tmp = x[i];
|
---|
1119 | x[i] = x[j];
|
---|
1120 | x[j] = tmp;
|
---|
1121 | tmp = y[i];
|
---|
1122 | y[i] = y[j];
|
---|
1123 | y[j] = tmp;
|
---|
1124 | tmp = d[i];
|
---|
1125 | d[i] = d[j];
|
---|
1126 | d[j] = tmp;
|
---|
1127 | }
|
---|
1128 | return;
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | //
|
---|
1132 | // Special case: N=1
|
---|
1133 | //
|
---|
1134 | if( n==1 )
|
---|
1135 | {
|
---|
1136 | return;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | //
|
---|
1140 | // General case
|
---|
1141 | //
|
---|
1142 | i = 2;
|
---|
1143 | do
|
---|
1144 | {
|
---|
1145 | t = i;
|
---|
1146 | while( t!=1 )
|
---|
1147 | {
|
---|
1148 | k = t/2;
|
---|
1149 | if( x[k-1]>=x[t-1] )
|
---|
1150 | {
|
---|
1151 | t = 1;
|
---|
1152 | }
|
---|
1153 | else
|
---|
1154 | {
|
---|
1155 | tmp = x[k-1];
|
---|
1156 | x[k-1] = x[t-1];
|
---|
1157 | x[t-1] = tmp;
|
---|
1158 | tmp = y[k-1];
|
---|
1159 | y[k-1] = y[t-1];
|
---|
1160 | y[t-1] = tmp;
|
---|
1161 | tmp = d[k-1];
|
---|
1162 | d[k-1] = d[t-1];
|
---|
1163 | d[t-1] = tmp;
|
---|
1164 | t = k;
|
---|
1165 | }
|
---|
1166 | }
|
---|
1167 | i = i+1;
|
---|
1168 | }
|
---|
1169 | while( i<=n );
|
---|
1170 | i = n-1;
|
---|
1171 | do
|
---|
1172 | {
|
---|
1173 | tmp = x[i];
|
---|
1174 | x[i] = x[0];
|
---|
1175 | x[0] = tmp;
|
---|
1176 | tmp = y[i];
|
---|
1177 | y[i] = y[0];
|
---|
1178 | y[0] = tmp;
|
---|
1179 | tmp = d[i];
|
---|
1180 | d[i] = d[0];
|
---|
1181 | d[0] = tmp;
|
---|
1182 | t = 1;
|
---|
1183 | while( t!=0 )
|
---|
1184 | {
|
---|
1185 | k = 2*t;
|
---|
1186 | if( k>i )
|
---|
1187 | {
|
---|
1188 | t = 0;
|
---|
1189 | }
|
---|
1190 | else
|
---|
1191 | {
|
---|
1192 | if( k<i )
|
---|
1193 | {
|
---|
1194 | if( x[k]>x[k-1] )
|
---|
1195 | {
|
---|
1196 | k = k+1;
|
---|
1197 | }
|
---|
1198 | }
|
---|
1199 | if( x[t-1]>=x[k-1] )
|
---|
1200 | {
|
---|
1201 | t = 0;
|
---|
1202 | }
|
---|
1203 | else
|
---|
1204 | {
|
---|
1205 | tmp = x[k-1];
|
---|
1206 | x[k-1] = x[t-1];
|
---|
1207 | x[t-1] = tmp;
|
---|
1208 | tmp = y[k-1];
|
---|
1209 | y[k-1] = y[t-1];
|
---|
1210 | y[t-1] = tmp;
|
---|
1211 | tmp = d[k-1];
|
---|
1212 | d[k-1] = d[t-1];
|
---|
1213 | d[t-1] = tmp;
|
---|
1214 | t = k;
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 | }
|
---|
1218 | i = i-1;
|
---|
1219 | }
|
---|
1220 | while( i>=1 );
|
---|
1221 | }
|
---|
1222 |
|
---|
1223 |
|
---|
1224 | /*************************************************************************
|
---|
1225 | Internal subroutine. Tridiagonal solver.
|
---|
1226 | *************************************************************************/
|
---|
1227 | private static void solvetridiagonal(double[] a,
|
---|
1228 | double[] b,
|
---|
1229 | double[] c,
|
---|
1230 | double[] d,
|
---|
1231 | int n,
|
---|
1232 | ref double[] x)
|
---|
1233 | {
|
---|
1234 | int k = 0;
|
---|
1235 | double t = 0;
|
---|
1236 |
|
---|
1237 | a = (double[])a.Clone();
|
---|
1238 | b = (double[])b.Clone();
|
---|
1239 | c = (double[])c.Clone();
|
---|
1240 | d = (double[])d.Clone();
|
---|
1241 |
|
---|
1242 | x = new double[n-1+1];
|
---|
1243 | a[0] = 0;
|
---|
1244 | c[n-1] = 0;
|
---|
1245 | for(k=1; k<=n-1; k++)
|
---|
1246 | {
|
---|
1247 | t = a[k]/b[k-1];
|
---|
1248 | b[k] = b[k]-t*c[k-1];
|
---|
1249 | d[k] = d[k]-t*d[k-1];
|
---|
1250 | }
|
---|
1251 | x[n-1] = d[n-1]/b[n-1];
|
---|
1252 | for(k=n-2; k>=0; k--)
|
---|
1253 | {
|
---|
1254 | x[k] = (d[k]-c[k]*x[k+1])/b[k];
|
---|
1255 | }
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 |
|
---|
1259 | /*************************************************************************
|
---|
1260 | Internal subroutine. Three-point differentiation
|
---|
1261 | *************************************************************************/
|
---|
1262 | private static double diffthreepoint(double t,
|
---|
1263 | double x0,
|
---|
1264 | double f0,
|
---|
1265 | double x1,
|
---|
1266 | double f1,
|
---|
1267 | double x2,
|
---|
1268 | double f2)
|
---|
1269 | {
|
---|
1270 | double result = 0;
|
---|
1271 | double a = 0;
|
---|
1272 | double b = 0;
|
---|
1273 |
|
---|
1274 | t = t-x0;
|
---|
1275 | x1 = x1-x0;
|
---|
1276 | x2 = x2-x0;
|
---|
1277 | a = (f2-f0-x2/x1*(f1-f0))/(AP.Math.Sqr(x2)-x1*x2);
|
---|
1278 | b = (f1-f0-a*AP.Math.Sqr(x1))/x1;
|
---|
1279 | result = 2*a*t+b;
|
---|
1280 | return result;
|
---|
1281 | }
|
---|
1282 | }
|
---|