1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | Redistribution and use in source and binary forms, with or without
|
---|
11 | modification, are permitted provided that the following conditions are
|
---|
12 | met:
|
---|
13 |
|
---|
14 | - Redistributions of source code must retain the above copyright
|
---|
15 | notice, this list of conditions and the following disclaimer.
|
---|
16 |
|
---|
17 | - Redistributions in binary form must reproduce the above copyright
|
---|
18 | notice, this list of conditions and the following disclaimer listed
|
---|
19 | in this license in the documentation and/or other materials
|
---|
20 | provided with the distribution.
|
---|
21 |
|
---|
22 | - Neither the name of the copyright holders nor the names of its
|
---|
23 | contributors may be used to endorse or promote products derived from
|
---|
24 | this software without specific prior written permission.
|
---|
25 |
|
---|
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
27 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
28 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
29 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
30 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
31 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
32 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
33 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
34 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
35 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
36 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
37 | *************************************************************************/
|
---|
38 |
|
---|
39 | using System;
|
---|
40 |
|
---|
41 | class bidiagonal
|
---|
42 | {
|
---|
43 | /*************************************************************************
|
---|
44 | Reduction of a rectangular matrix to bidiagonal form
|
---|
45 |
|
---|
46 | The algorithm reduces the rectangular matrix A to bidiagonal form by
|
---|
47 | orthogonal transformations P and Q: A = Q*B*P.
|
---|
48 |
|
---|
49 | Input parameters:
|
---|
50 | A - source matrix. array[0..M-1, 0..N-1]
|
---|
51 | M - number of rows in matrix A.
|
---|
52 | N - number of columns in matrix A.
|
---|
53 |
|
---|
54 | Output parameters:
|
---|
55 | A - matrices Q, B, P in compact form (see below).
|
---|
56 | TauQ - scalar factors which are used to form matrix Q.
|
---|
57 | TauP - scalar factors which are used to form matrix P.
|
---|
58 |
|
---|
59 | The main diagonal and one of the secondary diagonals of matrix A are
|
---|
60 | replaced with bidiagonal matrix B. Other elements contain elementary
|
---|
61 | reflections which form MxM matrix Q and NxN matrix P, respectively.
|
---|
62 |
|
---|
63 | If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
|
---|
64 | corresponding elements of matrix A. Matrix Q is represented as a
|
---|
65 | product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
|
---|
66 | H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
|
---|
67 | vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
|
---|
68 | stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
|
---|
69 | G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
|
---|
70 | u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
|
---|
71 |
|
---|
72 | If M<N, B is the lower bidiagonal MxN matrix and is stored in the
|
---|
73 | corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
|
---|
74 | H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
|
---|
75 | is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
|
---|
76 | G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
|
---|
77 | is stored in A(i,i+1:n-1).
|
---|
78 |
|
---|
79 | EXAMPLE:
|
---|
80 |
|
---|
81 | m=6, n=5 (m > n): m=5, n=6 (m < n):
|
---|
82 |
|
---|
83 | ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
---|
84 | ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
---|
85 | ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
---|
86 | ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
---|
87 | ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
---|
88 | ( v1 v2 v3 v4 v5 )
|
---|
89 |
|
---|
90 | Here vi and ui are vectors which form H(i) and G(i), and d and e -
|
---|
91 | are the diagonal and off-diagonal elements of matrix B.
|
---|
92 | *************************************************************************/
|
---|
93 | public static void rmatrixbd(ref double[,] a,
|
---|
94 | int m,
|
---|
95 | int n,
|
---|
96 | ref double[] tauq,
|
---|
97 | ref double[] taup)
|
---|
98 | {
|
---|
99 | double[] work = new double[0];
|
---|
100 | double[] t = new double[0];
|
---|
101 | int minmn = 0;
|
---|
102 | int maxmn = 0;
|
---|
103 | int i = 0;
|
---|
104 | int j = 0;
|
---|
105 | double ltau = 0;
|
---|
106 | int i_ = 0;
|
---|
107 | int i1_ = 0;
|
---|
108 |
|
---|
109 |
|
---|
110 | //
|
---|
111 | // Prepare
|
---|
112 | //
|
---|
113 | if( n<=0 | m<=0 )
|
---|
114 | {
|
---|
115 | return;
|
---|
116 | }
|
---|
117 | minmn = Math.Min(m, n);
|
---|
118 | maxmn = Math.Max(m, n);
|
---|
119 | work = new double[maxmn+1];
|
---|
120 | t = new double[maxmn+1];
|
---|
121 | if( m>=n )
|
---|
122 | {
|
---|
123 | tauq = new double[n-1+1];
|
---|
124 | taup = new double[n-1+1];
|
---|
125 | }
|
---|
126 | else
|
---|
127 | {
|
---|
128 | tauq = new double[m-1+1];
|
---|
129 | taup = new double[m-1+1];
|
---|
130 | }
|
---|
131 | if( m>=n )
|
---|
132 | {
|
---|
133 |
|
---|
134 | //
|
---|
135 | // Reduce to upper bidiagonal form
|
---|
136 | //
|
---|
137 | for(i=0; i<=n-1; i++)
|
---|
138 | {
|
---|
139 |
|
---|
140 | //
|
---|
141 | // Generate elementary reflector H(i) to annihilate A(i+1:m-1,i)
|
---|
142 | //
|
---|
143 | i1_ = (i) - (1);
|
---|
144 | for(i_=1; i_<=m-i;i_++)
|
---|
145 | {
|
---|
146 | t[i_] = a[i_+i1_,i];
|
---|
147 | }
|
---|
148 | reflections.generatereflection(ref t, m-i, ref ltau);
|
---|
149 | tauq[i] = ltau;
|
---|
150 | i1_ = (1) - (i);
|
---|
151 | for(i_=i; i_<=m-1;i_++)
|
---|
152 | {
|
---|
153 | a[i_,i] = t[i_+i1_];
|
---|
154 | }
|
---|
155 | t[1] = 1;
|
---|
156 |
|
---|
157 | //
|
---|
158 | // Apply H(i) to A(i:m-1,i+1:n-1) from the left
|
---|
159 | //
|
---|
160 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m-1, i+1, n-1, ref work);
|
---|
161 | if( i<n-1 )
|
---|
162 | {
|
---|
163 |
|
---|
164 | //
|
---|
165 | // Generate elementary reflector G(i) to annihilate
|
---|
166 | // A(i,i+2:n-1)
|
---|
167 | //
|
---|
168 | i1_ = (i+1) - (1);
|
---|
169 | for(i_=1; i_<=n-i-1;i_++)
|
---|
170 | {
|
---|
171 | t[i_] = a[i,i_+i1_];
|
---|
172 | }
|
---|
173 | reflections.generatereflection(ref t, n-1-i, ref ltau);
|
---|
174 | taup[i] = ltau;
|
---|
175 | i1_ = (1) - (i+1);
|
---|
176 | for(i_=i+1; i_<=n-1;i_++)
|
---|
177 | {
|
---|
178 | a[i,i_] = t[i_+i1_];
|
---|
179 | }
|
---|
180 | t[1] = 1;
|
---|
181 |
|
---|
182 | //
|
---|
183 | // Apply G(i) to A(i+1:m-1,i+1:n-1) from the right
|
---|
184 | //
|
---|
185 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
186 | }
|
---|
187 | else
|
---|
188 | {
|
---|
189 | taup[i] = 0;
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 | else
|
---|
194 | {
|
---|
195 |
|
---|
196 | //
|
---|
197 | // Reduce to lower bidiagonal form
|
---|
198 | //
|
---|
199 | for(i=0; i<=m-1; i++)
|
---|
200 | {
|
---|
201 |
|
---|
202 | //
|
---|
203 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n-1)
|
---|
204 | //
|
---|
205 | i1_ = (i) - (1);
|
---|
206 | for(i_=1; i_<=n-i;i_++)
|
---|
207 | {
|
---|
208 | t[i_] = a[i,i_+i1_];
|
---|
209 | }
|
---|
210 | reflections.generatereflection(ref t, n-i, ref ltau);
|
---|
211 | taup[i] = ltau;
|
---|
212 | i1_ = (1) - (i);
|
---|
213 | for(i_=i; i_<=n-1;i_++)
|
---|
214 | {
|
---|
215 | a[i,i_] = t[i_+i1_];
|
---|
216 | }
|
---|
217 | t[1] = 1;
|
---|
218 |
|
---|
219 | //
|
---|
220 | // Apply G(i) to A(i+1:m-1,i:n-1) from the right
|
---|
221 | //
|
---|
222 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i, n-1, ref work);
|
---|
223 | if( i<m-1 )
|
---|
224 | {
|
---|
225 |
|
---|
226 | //
|
---|
227 | // Generate elementary reflector H(i) to annihilate
|
---|
228 | // A(i+2:m-1,i)
|
---|
229 | //
|
---|
230 | i1_ = (i+1) - (1);
|
---|
231 | for(i_=1; i_<=m-1-i;i_++)
|
---|
232 | {
|
---|
233 | t[i_] = a[i_+i1_,i];
|
---|
234 | }
|
---|
235 | reflections.generatereflection(ref t, m-1-i, ref ltau);
|
---|
236 | tauq[i] = ltau;
|
---|
237 | i1_ = (1) - (i+1);
|
---|
238 | for(i_=i+1; i_<=m-1;i_++)
|
---|
239 | {
|
---|
240 | a[i_,i] = t[i_+i1_];
|
---|
241 | }
|
---|
242 | t[1] = 1;
|
---|
243 |
|
---|
244 | //
|
---|
245 | // Apply H(i) to A(i+1:m-1,i+1:n-1) from the left
|
---|
246 | //
|
---|
247 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
248 | }
|
---|
249 | else
|
---|
250 | {
|
---|
251 | tauq[i] = 0;
|
---|
252 | }
|
---|
253 | }
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 |
|
---|
258 | /*************************************************************************
|
---|
259 | Unpacking matrix Q which reduces a matrix to bidiagonal form.
|
---|
260 |
|
---|
261 | Input parameters:
|
---|
262 | QP - matrices Q and P in compact form.
|
---|
263 | Output of ToBidiagonal subroutine.
|
---|
264 | M - number of rows in matrix A.
|
---|
265 | N - number of columns in matrix A.
|
---|
266 | TAUQ - scalar factors which are used to form Q.
|
---|
267 | Output of ToBidiagonal subroutine.
|
---|
268 | QColumns - required number of columns in matrix Q.
|
---|
269 | M>=QColumns>=0.
|
---|
270 |
|
---|
271 | Output parameters:
|
---|
272 | Q - first QColumns columns of matrix Q.
|
---|
273 | Array[0..M-1, 0..QColumns-1]
|
---|
274 | If QColumns=0, the array is not modified.
|
---|
275 |
|
---|
276 | -- ALGLIB --
|
---|
277 | Copyright 2005 by Bochkanov Sergey
|
---|
278 | *************************************************************************/
|
---|
279 | public static void rmatrixbdunpackq(ref double[,] qp,
|
---|
280 | int m,
|
---|
281 | int n,
|
---|
282 | ref double[] tauq,
|
---|
283 | int qcolumns,
|
---|
284 | ref double[,] q)
|
---|
285 | {
|
---|
286 | int i = 0;
|
---|
287 | int j = 0;
|
---|
288 |
|
---|
289 | System.Diagnostics.Debug.Assert(qcolumns<=m, "RMatrixBDUnpackQ: QColumns>M!");
|
---|
290 | System.Diagnostics.Debug.Assert(qcolumns>=0, "RMatrixBDUnpackQ: QColumns<0!");
|
---|
291 | if( m==0 | n==0 | qcolumns==0 )
|
---|
292 | {
|
---|
293 | return;
|
---|
294 | }
|
---|
295 |
|
---|
296 | //
|
---|
297 | // prepare Q
|
---|
298 | //
|
---|
299 | q = new double[m-1+1, qcolumns-1+1];
|
---|
300 | for(i=0; i<=m-1; i++)
|
---|
301 | {
|
---|
302 | for(j=0; j<=qcolumns-1; j++)
|
---|
303 | {
|
---|
304 | if( i==j )
|
---|
305 | {
|
---|
306 | q[i,j] = 1;
|
---|
307 | }
|
---|
308 | else
|
---|
309 | {
|
---|
310 | q[i,j] = 0;
|
---|
311 | }
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | //
|
---|
316 | // Calculate
|
---|
317 | //
|
---|
318 | rmatrixbdmultiplybyq(ref qp, m, n, ref tauq, ref q, m, qcolumns, false, false);
|
---|
319 | }
|
---|
320 |
|
---|
321 |
|
---|
322 | /*************************************************************************
|
---|
323 | Multiplication by matrix Q which reduces matrix A to bidiagonal form.
|
---|
324 |
|
---|
325 | The algorithm allows pre- or post-multiply by Q or Q'.
|
---|
326 |
|
---|
327 | Input parameters:
|
---|
328 | QP - matrices Q and P in compact form.
|
---|
329 | Output of ToBidiagonal subroutine.
|
---|
330 | M - number of rows in matrix A.
|
---|
331 | N - number of columns in matrix A.
|
---|
332 | TAUQ - scalar factors which are used to form Q.
|
---|
333 | Output of ToBidiagonal subroutine.
|
---|
334 | Z - multiplied matrix.
|
---|
335 | array[0..ZRows-1,0..ZColumns-1]
|
---|
336 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
337 | ZRows=M, otherwise ZRows can be arbitrary.
|
---|
338 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
339 | ZColumns=M, otherwise ZColumns can be arbitrary.
|
---|
340 | FromTheRight - pre- or post-multiply.
|
---|
341 | DoTranspose - multiply by Q or Q'.
|
---|
342 |
|
---|
343 | Output parameters:
|
---|
344 | Z - product of Z and Q.
|
---|
345 | Array[0..ZRows-1,0..ZColumns-1]
|
---|
346 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
347 |
|
---|
348 | -- ALGLIB --
|
---|
349 | Copyright 2005 by Bochkanov Sergey
|
---|
350 | *************************************************************************/
|
---|
351 | public static void rmatrixbdmultiplybyq(ref double[,] qp,
|
---|
352 | int m,
|
---|
353 | int n,
|
---|
354 | ref double[] tauq,
|
---|
355 | ref double[,] z,
|
---|
356 | int zrows,
|
---|
357 | int zcolumns,
|
---|
358 | bool fromtheright,
|
---|
359 | bool dotranspose)
|
---|
360 | {
|
---|
361 | int i = 0;
|
---|
362 | int i1 = 0;
|
---|
363 | int i2 = 0;
|
---|
364 | int istep = 0;
|
---|
365 | double[] v = new double[0];
|
---|
366 | double[] work = new double[0];
|
---|
367 | int mx = 0;
|
---|
368 | int i_ = 0;
|
---|
369 | int i1_ = 0;
|
---|
370 |
|
---|
371 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
372 | {
|
---|
373 | return;
|
---|
374 | }
|
---|
375 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "RMatrixBDMultiplyByQ: incorrect Z size!");
|
---|
376 |
|
---|
377 | //
|
---|
378 | // init
|
---|
379 | //
|
---|
380 | mx = Math.Max(m, n);
|
---|
381 | mx = Math.Max(mx, zrows);
|
---|
382 | mx = Math.Max(mx, zcolumns);
|
---|
383 | v = new double[mx+1];
|
---|
384 | work = new double[mx+1];
|
---|
385 | if( m>=n )
|
---|
386 | {
|
---|
387 |
|
---|
388 | //
|
---|
389 | // setup
|
---|
390 | //
|
---|
391 | if( fromtheright )
|
---|
392 | {
|
---|
393 | i1 = 0;
|
---|
394 | i2 = n-1;
|
---|
395 | istep = +1;
|
---|
396 | }
|
---|
397 | else
|
---|
398 | {
|
---|
399 | i1 = n-1;
|
---|
400 | i2 = 0;
|
---|
401 | istep = -1;
|
---|
402 | }
|
---|
403 | if( dotranspose )
|
---|
404 | {
|
---|
405 | i = i1;
|
---|
406 | i1 = i2;
|
---|
407 | i2 = i;
|
---|
408 | istep = -istep;
|
---|
409 | }
|
---|
410 |
|
---|
411 | //
|
---|
412 | // Process
|
---|
413 | //
|
---|
414 | i = i1;
|
---|
415 | do
|
---|
416 | {
|
---|
417 | i1_ = (i) - (1);
|
---|
418 | for(i_=1; i_<=m-i;i_++)
|
---|
419 | {
|
---|
420 | v[i_] = qp[i_+i1_,i];
|
---|
421 | }
|
---|
422 | v[1] = 1;
|
---|
423 | if( fromtheright )
|
---|
424 | {
|
---|
425 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i, m-1, ref work);
|
---|
426 | }
|
---|
427 | else
|
---|
428 | {
|
---|
429 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m-1, 0, zcolumns-1, ref work);
|
---|
430 | }
|
---|
431 | i = i+istep;
|
---|
432 | }
|
---|
433 | while( i!=i2+istep );
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 |
|
---|
438 | //
|
---|
439 | // setup
|
---|
440 | //
|
---|
441 | if( fromtheright )
|
---|
442 | {
|
---|
443 | i1 = 0;
|
---|
444 | i2 = m-2;
|
---|
445 | istep = +1;
|
---|
446 | }
|
---|
447 | else
|
---|
448 | {
|
---|
449 | i1 = m-2;
|
---|
450 | i2 = 0;
|
---|
451 | istep = -1;
|
---|
452 | }
|
---|
453 | if( dotranspose )
|
---|
454 | {
|
---|
455 | i = i1;
|
---|
456 | i1 = i2;
|
---|
457 | i2 = i;
|
---|
458 | istep = -istep;
|
---|
459 | }
|
---|
460 |
|
---|
461 | //
|
---|
462 | // Process
|
---|
463 | //
|
---|
464 | if( m-1>0 )
|
---|
465 | {
|
---|
466 | i = i1;
|
---|
467 | do
|
---|
468 | {
|
---|
469 | i1_ = (i+1) - (1);
|
---|
470 | for(i_=1; i_<=m-i-1;i_++)
|
---|
471 | {
|
---|
472 | v[i_] = qp[i_+i1_,i];
|
---|
473 | }
|
---|
474 | v[1] = 1;
|
---|
475 | if( fromtheright )
|
---|
476 | {
|
---|
477 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i+1, m-1, ref work);
|
---|
478 | }
|
---|
479 | else
|
---|
480 | {
|
---|
481 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m-1, 0, zcolumns-1, ref work);
|
---|
482 | }
|
---|
483 | i = i+istep;
|
---|
484 | }
|
---|
485 | while( i!=i2+istep );
|
---|
486 | }
|
---|
487 | }
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | /*************************************************************************
|
---|
492 | Unpacking matrix P which reduces matrix A to bidiagonal form.
|
---|
493 | The subroutine returns transposed matrix P.
|
---|
494 |
|
---|
495 | Input parameters:
|
---|
496 | QP - matrices Q and P in compact form.
|
---|
497 | Output of ToBidiagonal subroutine.
|
---|
498 | M - number of rows in matrix A.
|
---|
499 | N - number of columns in matrix A.
|
---|
500 | TAUP - scalar factors which are used to form P.
|
---|
501 | Output of ToBidiagonal subroutine.
|
---|
502 | PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
|
---|
503 |
|
---|
504 | Output parameters:
|
---|
505 | PT - first PTRows columns of matrix P^T
|
---|
506 | Array[0..PTRows-1, 0..N-1]
|
---|
507 | If PTRows=0, the array is not modified.
|
---|
508 |
|
---|
509 | -- ALGLIB --
|
---|
510 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
511 | *************************************************************************/
|
---|
512 | public static void rmatrixbdunpackpt(ref double[,] qp,
|
---|
513 | int m,
|
---|
514 | int n,
|
---|
515 | ref double[] taup,
|
---|
516 | int ptrows,
|
---|
517 | ref double[,] pt)
|
---|
518 | {
|
---|
519 | int i = 0;
|
---|
520 | int j = 0;
|
---|
521 |
|
---|
522 | System.Diagnostics.Debug.Assert(ptrows<=n, "RMatrixBDUnpackPT: PTRows>N!");
|
---|
523 | System.Diagnostics.Debug.Assert(ptrows>=0, "RMatrixBDUnpackPT: PTRows<0!");
|
---|
524 | if( m==0 | n==0 | ptrows==0 )
|
---|
525 | {
|
---|
526 | return;
|
---|
527 | }
|
---|
528 |
|
---|
529 | //
|
---|
530 | // prepare PT
|
---|
531 | //
|
---|
532 | pt = new double[ptrows-1+1, n-1+1];
|
---|
533 | for(i=0; i<=ptrows-1; i++)
|
---|
534 | {
|
---|
535 | for(j=0; j<=n-1; j++)
|
---|
536 | {
|
---|
537 | if( i==j )
|
---|
538 | {
|
---|
539 | pt[i,j] = 1;
|
---|
540 | }
|
---|
541 | else
|
---|
542 | {
|
---|
543 | pt[i,j] = 0;
|
---|
544 | }
|
---|
545 | }
|
---|
546 | }
|
---|
547 |
|
---|
548 | //
|
---|
549 | // Calculate
|
---|
550 | //
|
---|
551 | rmatrixbdmultiplybyp(ref qp, m, n, ref taup, ref pt, ptrows, n, true, true);
|
---|
552 | }
|
---|
553 |
|
---|
554 |
|
---|
555 | /*************************************************************************
|
---|
556 | Multiplication by matrix P which reduces matrix A to bidiagonal form.
|
---|
557 |
|
---|
558 | The algorithm allows pre- or post-multiply by P or P'.
|
---|
559 |
|
---|
560 | Input parameters:
|
---|
561 | QP - matrices Q and P in compact form.
|
---|
562 | Output of RMatrixBD subroutine.
|
---|
563 | M - number of rows in matrix A.
|
---|
564 | N - number of columns in matrix A.
|
---|
565 | TAUP - scalar factors which are used to form P.
|
---|
566 | Output of RMatrixBD subroutine.
|
---|
567 | Z - multiplied matrix.
|
---|
568 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
569 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
570 | ZRows=N, otherwise ZRows can be arbitrary.
|
---|
571 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
572 | ZColumns=N, otherwise ZColumns can be arbitrary.
|
---|
573 | FromTheRight - pre- or post-multiply.
|
---|
574 | DoTranspose - multiply by P or P'.
|
---|
575 |
|
---|
576 | Output parameters:
|
---|
577 | Z - product of Z and P.
|
---|
578 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
579 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
580 |
|
---|
581 | -- ALGLIB --
|
---|
582 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
583 | *************************************************************************/
|
---|
584 | public static void rmatrixbdmultiplybyp(ref double[,] qp,
|
---|
585 | int m,
|
---|
586 | int n,
|
---|
587 | ref double[] taup,
|
---|
588 | ref double[,] z,
|
---|
589 | int zrows,
|
---|
590 | int zcolumns,
|
---|
591 | bool fromtheright,
|
---|
592 | bool dotranspose)
|
---|
593 | {
|
---|
594 | int i = 0;
|
---|
595 | double[] v = new double[0];
|
---|
596 | double[] work = new double[0];
|
---|
597 | int mx = 0;
|
---|
598 | int i1 = 0;
|
---|
599 | int i2 = 0;
|
---|
600 | int istep = 0;
|
---|
601 | int i_ = 0;
|
---|
602 | int i1_ = 0;
|
---|
603 |
|
---|
604 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
605 | {
|
---|
606 | return;
|
---|
607 | }
|
---|
608 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "RMatrixBDMultiplyByP: incorrect Z size!");
|
---|
609 |
|
---|
610 | //
|
---|
611 | // init
|
---|
612 | //
|
---|
613 | mx = Math.Max(m, n);
|
---|
614 | mx = Math.Max(mx, zrows);
|
---|
615 | mx = Math.Max(mx, zcolumns);
|
---|
616 | v = new double[mx+1];
|
---|
617 | work = new double[mx+1];
|
---|
618 | v = new double[mx+1];
|
---|
619 | work = new double[mx+1];
|
---|
620 | if( m>=n )
|
---|
621 | {
|
---|
622 |
|
---|
623 | //
|
---|
624 | // setup
|
---|
625 | //
|
---|
626 | if( fromtheright )
|
---|
627 | {
|
---|
628 | i1 = n-2;
|
---|
629 | i2 = 0;
|
---|
630 | istep = -1;
|
---|
631 | }
|
---|
632 | else
|
---|
633 | {
|
---|
634 | i1 = 0;
|
---|
635 | i2 = n-2;
|
---|
636 | istep = +1;
|
---|
637 | }
|
---|
638 | if( !dotranspose )
|
---|
639 | {
|
---|
640 | i = i1;
|
---|
641 | i1 = i2;
|
---|
642 | i2 = i;
|
---|
643 | istep = -istep;
|
---|
644 | }
|
---|
645 |
|
---|
646 | //
|
---|
647 | // Process
|
---|
648 | //
|
---|
649 | if( n-1>0 )
|
---|
650 | {
|
---|
651 | i = i1;
|
---|
652 | do
|
---|
653 | {
|
---|
654 | i1_ = (i+1) - (1);
|
---|
655 | for(i_=1; i_<=n-1-i;i_++)
|
---|
656 | {
|
---|
657 | v[i_] = qp[i,i_+i1_];
|
---|
658 | }
|
---|
659 | v[1] = 1;
|
---|
660 | if( fromtheright )
|
---|
661 | {
|
---|
662 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i+1, n-1, ref work);
|
---|
663 | }
|
---|
664 | else
|
---|
665 | {
|
---|
666 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n-1, 0, zcolumns-1, ref work);
|
---|
667 | }
|
---|
668 | i = i+istep;
|
---|
669 | }
|
---|
670 | while( i!=i2+istep );
|
---|
671 | }
|
---|
672 | }
|
---|
673 | else
|
---|
674 | {
|
---|
675 |
|
---|
676 | //
|
---|
677 | // setup
|
---|
678 | //
|
---|
679 | if( fromtheright )
|
---|
680 | {
|
---|
681 | i1 = m-1;
|
---|
682 | i2 = 0;
|
---|
683 | istep = -1;
|
---|
684 | }
|
---|
685 | else
|
---|
686 | {
|
---|
687 | i1 = 0;
|
---|
688 | i2 = m-1;
|
---|
689 | istep = +1;
|
---|
690 | }
|
---|
691 | if( !dotranspose )
|
---|
692 | {
|
---|
693 | i = i1;
|
---|
694 | i1 = i2;
|
---|
695 | i2 = i;
|
---|
696 | istep = -istep;
|
---|
697 | }
|
---|
698 |
|
---|
699 | //
|
---|
700 | // Process
|
---|
701 | //
|
---|
702 | i = i1;
|
---|
703 | do
|
---|
704 | {
|
---|
705 | i1_ = (i) - (1);
|
---|
706 | for(i_=1; i_<=n-i;i_++)
|
---|
707 | {
|
---|
708 | v[i_] = qp[i,i_+i1_];
|
---|
709 | }
|
---|
710 | v[1] = 1;
|
---|
711 | if( fromtheright )
|
---|
712 | {
|
---|
713 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i, n-1, ref work);
|
---|
714 | }
|
---|
715 | else
|
---|
716 | {
|
---|
717 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n-1, 0, zcolumns-1, ref work);
|
---|
718 | }
|
---|
719 | i = i+istep;
|
---|
720 | }
|
---|
721 | while( i!=i2+istep );
|
---|
722 | }
|
---|
723 | }
|
---|
724 |
|
---|
725 |
|
---|
726 | /*************************************************************************
|
---|
727 | Unpacking of the main and secondary diagonals of bidiagonal decomposition
|
---|
728 | of matrix A.
|
---|
729 |
|
---|
730 | Input parameters:
|
---|
731 | B - output of RMatrixBD subroutine.
|
---|
732 | M - number of rows in matrix B.
|
---|
733 | N - number of columns in matrix B.
|
---|
734 |
|
---|
735 | Output parameters:
|
---|
736 | IsUpper - True, if the matrix is upper bidiagonal.
|
---|
737 | otherwise IsUpper is False.
|
---|
738 | D - the main diagonal.
|
---|
739 | Array whose index ranges within [0..Min(M,N)-1].
|
---|
740 | E - the secondary diagonal (upper or lower, depending on
|
---|
741 | the value of IsUpper).
|
---|
742 | Array index ranges within [0..Min(M,N)-1], the last
|
---|
743 | element is not used.
|
---|
744 |
|
---|
745 | -- ALGLIB --
|
---|
746 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
747 | *************************************************************************/
|
---|
748 | public static void rmatrixbdunpackdiagonals(ref double[,] b,
|
---|
749 | int m,
|
---|
750 | int n,
|
---|
751 | ref bool isupper,
|
---|
752 | ref double[] d,
|
---|
753 | ref double[] e)
|
---|
754 | {
|
---|
755 | int i = 0;
|
---|
756 |
|
---|
757 | isupper = m>=n;
|
---|
758 | if( m<=0 | n<=0 )
|
---|
759 | {
|
---|
760 | return;
|
---|
761 | }
|
---|
762 | if( isupper )
|
---|
763 | {
|
---|
764 | d = new double[n-1+1];
|
---|
765 | e = new double[n-1+1];
|
---|
766 | for(i=0; i<=n-2; i++)
|
---|
767 | {
|
---|
768 | d[i] = b[i,i];
|
---|
769 | e[i] = b[i,i+1];
|
---|
770 | }
|
---|
771 | d[n-1] = b[n-1,n-1];
|
---|
772 | }
|
---|
773 | else
|
---|
774 | {
|
---|
775 | d = new double[m-1+1];
|
---|
776 | e = new double[m-1+1];
|
---|
777 | for(i=0; i<=m-2; i++)
|
---|
778 | {
|
---|
779 | d[i] = b[i,i];
|
---|
780 | e[i] = b[i+1,i];
|
---|
781 | }
|
---|
782 | d[m-1] = b[m-1,m-1];
|
---|
783 | }
|
---|
784 | }
|
---|
785 |
|
---|
786 |
|
---|
787 | /*************************************************************************
|
---|
788 | Obsolete 1-based subroutine.
|
---|
789 | See RMatrixBD for 0-based replacement.
|
---|
790 | *************************************************************************/
|
---|
791 | public static void tobidiagonal(ref double[,] a,
|
---|
792 | int m,
|
---|
793 | int n,
|
---|
794 | ref double[] tauq,
|
---|
795 | ref double[] taup)
|
---|
796 | {
|
---|
797 | double[] work = new double[0];
|
---|
798 | double[] t = new double[0];
|
---|
799 | int minmn = 0;
|
---|
800 | int maxmn = 0;
|
---|
801 | int i = 0;
|
---|
802 | double ltau = 0;
|
---|
803 | int mmip1 = 0;
|
---|
804 | int nmi = 0;
|
---|
805 | int ip1 = 0;
|
---|
806 | int nmip1 = 0;
|
---|
807 | int mmi = 0;
|
---|
808 | int i_ = 0;
|
---|
809 | int i1_ = 0;
|
---|
810 |
|
---|
811 | minmn = Math.Min(m, n);
|
---|
812 | maxmn = Math.Max(m, n);
|
---|
813 | work = new double[maxmn+1];
|
---|
814 | t = new double[maxmn+1];
|
---|
815 | taup = new double[minmn+1];
|
---|
816 | tauq = new double[minmn+1];
|
---|
817 | if( m>=n )
|
---|
818 | {
|
---|
819 |
|
---|
820 | //
|
---|
821 | // Reduce to upper bidiagonal form
|
---|
822 | //
|
---|
823 | for(i=1; i<=n; i++)
|
---|
824 | {
|
---|
825 |
|
---|
826 | //
|
---|
827 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
828 | //
|
---|
829 | mmip1 = m-i+1;
|
---|
830 | i1_ = (i) - (1);
|
---|
831 | for(i_=1; i_<=mmip1;i_++)
|
---|
832 | {
|
---|
833 | t[i_] = a[i_+i1_,i];
|
---|
834 | }
|
---|
835 | reflections.generatereflection(ref t, mmip1, ref ltau);
|
---|
836 | tauq[i] = ltau;
|
---|
837 | i1_ = (1) - (i);
|
---|
838 | for(i_=i; i_<=m;i_++)
|
---|
839 | {
|
---|
840 | a[i_,i] = t[i_+i1_];
|
---|
841 | }
|
---|
842 | t[1] = 1;
|
---|
843 |
|
---|
844 | //
|
---|
845 | // Apply H(i) to A(i:m,i+1:n) from the left
|
---|
846 | //
|
---|
847 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m, i+1, n, ref work);
|
---|
848 | if( i<n )
|
---|
849 | {
|
---|
850 |
|
---|
851 | //
|
---|
852 | // Generate elementary reflector G(i) to annihilate
|
---|
853 | // A(i,i+2:n)
|
---|
854 | //
|
---|
855 | nmi = n-i;
|
---|
856 | ip1 = i+1;
|
---|
857 | i1_ = (ip1) - (1);
|
---|
858 | for(i_=1; i_<=nmi;i_++)
|
---|
859 | {
|
---|
860 | t[i_] = a[i,i_+i1_];
|
---|
861 | }
|
---|
862 | reflections.generatereflection(ref t, nmi, ref ltau);
|
---|
863 | taup[i] = ltau;
|
---|
864 | i1_ = (1) - (ip1);
|
---|
865 | for(i_=ip1; i_<=n;i_++)
|
---|
866 | {
|
---|
867 | a[i,i_] = t[i_+i1_];
|
---|
868 | }
|
---|
869 | t[1] = 1;
|
---|
870 |
|
---|
871 | //
|
---|
872 | // Apply G(i) to A(i+1:m,i+1:n) from the right
|
---|
873 | //
|
---|
874 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
875 | }
|
---|
876 | else
|
---|
877 | {
|
---|
878 | taup[i] = 0;
|
---|
879 | }
|
---|
880 | }
|
---|
881 | }
|
---|
882 | else
|
---|
883 | {
|
---|
884 |
|
---|
885 | //
|
---|
886 | // Reduce to lower bidiagonal form
|
---|
887 | //
|
---|
888 | for(i=1; i<=m; i++)
|
---|
889 | {
|
---|
890 |
|
---|
891 | //
|
---|
892 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n)
|
---|
893 | //
|
---|
894 | nmip1 = n-i+1;
|
---|
895 | i1_ = (i) - (1);
|
---|
896 | for(i_=1; i_<=nmip1;i_++)
|
---|
897 | {
|
---|
898 | t[i_] = a[i,i_+i1_];
|
---|
899 | }
|
---|
900 | reflections.generatereflection(ref t, nmip1, ref ltau);
|
---|
901 | taup[i] = ltau;
|
---|
902 | i1_ = (1) - (i);
|
---|
903 | for(i_=i; i_<=n;i_++)
|
---|
904 | {
|
---|
905 | a[i,i_] = t[i_+i1_];
|
---|
906 | }
|
---|
907 | t[1] = 1;
|
---|
908 |
|
---|
909 | //
|
---|
910 | // Apply G(i) to A(i+1:m,i:n) from the right
|
---|
911 | //
|
---|
912 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i, n, ref work);
|
---|
913 | if( i<m )
|
---|
914 | {
|
---|
915 |
|
---|
916 | //
|
---|
917 | // Generate elementary reflector H(i) to annihilate
|
---|
918 | // A(i+2:m,i)
|
---|
919 | //
|
---|
920 | mmi = m-i;
|
---|
921 | ip1 = i+1;
|
---|
922 | i1_ = (ip1) - (1);
|
---|
923 | for(i_=1; i_<=mmi;i_++)
|
---|
924 | {
|
---|
925 | t[i_] = a[i_+i1_,i];
|
---|
926 | }
|
---|
927 | reflections.generatereflection(ref t, mmi, ref ltau);
|
---|
928 | tauq[i] = ltau;
|
---|
929 | i1_ = (1) - (ip1);
|
---|
930 | for(i_=ip1; i_<=m;i_++)
|
---|
931 | {
|
---|
932 | a[i_,i] = t[i_+i1_];
|
---|
933 | }
|
---|
934 | t[1] = 1;
|
---|
935 |
|
---|
936 | //
|
---|
937 | // Apply H(i) to A(i+1:m,i+1:n) from the left
|
---|
938 | //
|
---|
939 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
940 | }
|
---|
941 | else
|
---|
942 | {
|
---|
943 | tauq[i] = 0;
|
---|
944 | }
|
---|
945 | }
|
---|
946 | }
|
---|
947 | }
|
---|
948 |
|
---|
949 |
|
---|
950 | /*************************************************************************
|
---|
951 | Obsolete 1-based subroutine.
|
---|
952 | See RMatrixBDUnpackQ for 0-based replacement.
|
---|
953 | *************************************************************************/
|
---|
954 | public static void unpackqfrombidiagonal(ref double[,] qp,
|
---|
955 | int m,
|
---|
956 | int n,
|
---|
957 | ref double[] tauq,
|
---|
958 | int qcolumns,
|
---|
959 | ref double[,] q)
|
---|
960 | {
|
---|
961 | int i = 0;
|
---|
962 | int j = 0;
|
---|
963 | int ip1 = 0;
|
---|
964 | double[] v = new double[0];
|
---|
965 | double[] work = new double[0];
|
---|
966 | int vm = 0;
|
---|
967 | int i_ = 0;
|
---|
968 | int i1_ = 0;
|
---|
969 |
|
---|
970 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromBidiagonal: QColumns>M!");
|
---|
971 | if( m==0 | n==0 | qcolumns==0 )
|
---|
972 | {
|
---|
973 | return;
|
---|
974 | }
|
---|
975 |
|
---|
976 | //
|
---|
977 | // init
|
---|
978 | //
|
---|
979 | q = new double[m+1, qcolumns+1];
|
---|
980 | v = new double[m+1];
|
---|
981 | work = new double[qcolumns+1];
|
---|
982 |
|
---|
983 | //
|
---|
984 | // prepare Q
|
---|
985 | //
|
---|
986 | for(i=1; i<=m; i++)
|
---|
987 | {
|
---|
988 | for(j=1; j<=qcolumns; j++)
|
---|
989 | {
|
---|
990 | if( i==j )
|
---|
991 | {
|
---|
992 | q[i,j] = 1;
|
---|
993 | }
|
---|
994 | else
|
---|
995 | {
|
---|
996 | q[i,j] = 0;
|
---|
997 | }
|
---|
998 | }
|
---|
999 | }
|
---|
1000 | if( m>=n )
|
---|
1001 | {
|
---|
1002 | for(i=Math.Min(n, qcolumns); i>=1; i--)
|
---|
1003 | {
|
---|
1004 | vm = m-i+1;
|
---|
1005 | i1_ = (i) - (1);
|
---|
1006 | for(i_=1; i_<=vm;i_++)
|
---|
1007 | {
|
---|
1008 | v[i_] = qp[i_+i1_,i];
|
---|
1009 | }
|
---|
1010 | v[1] = 1;
|
---|
1011 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i, m, 1, qcolumns, ref work);
|
---|
1012 | }
|
---|
1013 | }
|
---|
1014 | else
|
---|
1015 | {
|
---|
1016 | for(i=Math.Min(m-1, qcolumns-1); i>=1; i--)
|
---|
1017 | {
|
---|
1018 | vm = m-i;
|
---|
1019 | ip1 = i+1;
|
---|
1020 | i1_ = (ip1) - (1);
|
---|
1021 | for(i_=1; i_<=vm;i_++)
|
---|
1022 | {
|
---|
1023 | v[i_] = qp[i_+i1_,i];
|
---|
1024 | }
|
---|
1025 | v[1] = 1;
|
---|
1026 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i+1, m, 1, qcolumns, ref work);
|
---|
1027 | }
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 |
|
---|
1032 | /*************************************************************************
|
---|
1033 | Obsolete 1-based subroutine.
|
---|
1034 | See RMatrixBDMultiplyByQ for 0-based replacement.
|
---|
1035 | *************************************************************************/
|
---|
1036 | public static void multiplybyqfrombidiagonal(ref double[,] qp,
|
---|
1037 | int m,
|
---|
1038 | int n,
|
---|
1039 | ref double[] tauq,
|
---|
1040 | ref double[,] z,
|
---|
1041 | int zrows,
|
---|
1042 | int zcolumns,
|
---|
1043 | bool fromtheright,
|
---|
1044 | bool dotranspose)
|
---|
1045 | {
|
---|
1046 | int i = 0;
|
---|
1047 | int ip1 = 0;
|
---|
1048 | int i1 = 0;
|
---|
1049 | int i2 = 0;
|
---|
1050 | int istep = 0;
|
---|
1051 | double[] v = new double[0];
|
---|
1052 | double[] work = new double[0];
|
---|
1053 | int vm = 0;
|
---|
1054 | int mx = 0;
|
---|
1055 | int i_ = 0;
|
---|
1056 | int i1_ = 0;
|
---|
1057 |
|
---|
1058 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
1059 | {
|
---|
1060 | return;
|
---|
1061 | }
|
---|
1062 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
1063 |
|
---|
1064 | //
|
---|
1065 | // init
|
---|
1066 | //
|
---|
1067 | mx = Math.Max(m, n);
|
---|
1068 | mx = Math.Max(mx, zrows);
|
---|
1069 | mx = Math.Max(mx, zcolumns);
|
---|
1070 | v = new double[mx+1];
|
---|
1071 | work = new double[mx+1];
|
---|
1072 | if( m>=n )
|
---|
1073 | {
|
---|
1074 |
|
---|
1075 | //
|
---|
1076 | // setup
|
---|
1077 | //
|
---|
1078 | if( fromtheright )
|
---|
1079 | {
|
---|
1080 | i1 = 1;
|
---|
1081 | i2 = n;
|
---|
1082 | istep = +1;
|
---|
1083 | }
|
---|
1084 | else
|
---|
1085 | {
|
---|
1086 | i1 = n;
|
---|
1087 | i2 = 1;
|
---|
1088 | istep = -1;
|
---|
1089 | }
|
---|
1090 | if( dotranspose )
|
---|
1091 | {
|
---|
1092 | i = i1;
|
---|
1093 | i1 = i2;
|
---|
1094 | i2 = i;
|
---|
1095 | istep = -istep;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | //
|
---|
1099 | // Process
|
---|
1100 | //
|
---|
1101 | i = i1;
|
---|
1102 | do
|
---|
1103 | {
|
---|
1104 | vm = m-i+1;
|
---|
1105 | i1_ = (i) - (1);
|
---|
1106 | for(i_=1; i_<=vm;i_++)
|
---|
1107 | {
|
---|
1108 | v[i_] = qp[i_+i1_,i];
|
---|
1109 | }
|
---|
1110 | v[1] = 1;
|
---|
1111 | if( fromtheright )
|
---|
1112 | {
|
---|
1113 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i, m, ref work);
|
---|
1114 | }
|
---|
1115 | else
|
---|
1116 | {
|
---|
1117 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m, 1, zcolumns, ref work);
|
---|
1118 | }
|
---|
1119 | i = i+istep;
|
---|
1120 | }
|
---|
1121 | while( i!=i2+istep );
|
---|
1122 | }
|
---|
1123 | else
|
---|
1124 | {
|
---|
1125 |
|
---|
1126 | //
|
---|
1127 | // setup
|
---|
1128 | //
|
---|
1129 | if( fromtheright )
|
---|
1130 | {
|
---|
1131 | i1 = 1;
|
---|
1132 | i2 = m-1;
|
---|
1133 | istep = +1;
|
---|
1134 | }
|
---|
1135 | else
|
---|
1136 | {
|
---|
1137 | i1 = m-1;
|
---|
1138 | i2 = 1;
|
---|
1139 | istep = -1;
|
---|
1140 | }
|
---|
1141 | if( dotranspose )
|
---|
1142 | {
|
---|
1143 | i = i1;
|
---|
1144 | i1 = i2;
|
---|
1145 | i2 = i;
|
---|
1146 | istep = -istep;
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | //
|
---|
1150 | // Process
|
---|
1151 | //
|
---|
1152 | if( m-1>0 )
|
---|
1153 | {
|
---|
1154 | i = i1;
|
---|
1155 | do
|
---|
1156 | {
|
---|
1157 | vm = m-i;
|
---|
1158 | ip1 = i+1;
|
---|
1159 | i1_ = (ip1) - (1);
|
---|
1160 | for(i_=1; i_<=vm;i_++)
|
---|
1161 | {
|
---|
1162 | v[i_] = qp[i_+i1_,i];
|
---|
1163 | }
|
---|
1164 | v[1] = 1;
|
---|
1165 | if( fromtheright )
|
---|
1166 | {
|
---|
1167 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i+1, m, ref work);
|
---|
1168 | }
|
---|
1169 | else
|
---|
1170 | {
|
---|
1171 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m, 1, zcolumns, ref work);
|
---|
1172 | }
|
---|
1173 | i = i+istep;
|
---|
1174 | }
|
---|
1175 | while( i!=i2+istep );
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 |
|
---|
1181 | /*************************************************************************
|
---|
1182 | Obsolete 1-based subroutine.
|
---|
1183 | See RMatrixBDUnpackPT for 0-based replacement.
|
---|
1184 | *************************************************************************/
|
---|
1185 | public static void unpackptfrombidiagonal(ref double[,] qp,
|
---|
1186 | int m,
|
---|
1187 | int n,
|
---|
1188 | ref double[] taup,
|
---|
1189 | int ptrows,
|
---|
1190 | ref double[,] pt)
|
---|
1191 | {
|
---|
1192 | int i = 0;
|
---|
1193 | int j = 0;
|
---|
1194 | int ip1 = 0;
|
---|
1195 | double[] v = new double[0];
|
---|
1196 | double[] work = new double[0];
|
---|
1197 | int vm = 0;
|
---|
1198 | int i_ = 0;
|
---|
1199 | int i1_ = 0;
|
---|
1200 |
|
---|
1201 | System.Diagnostics.Debug.Assert(ptrows<=n, "UnpackPTFromBidiagonal: PTRows>N!");
|
---|
1202 | if( m==0 | n==0 | ptrows==0 )
|
---|
1203 | {
|
---|
1204 | return;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | //
|
---|
1208 | // init
|
---|
1209 | //
|
---|
1210 | pt = new double[ptrows+1, n+1];
|
---|
1211 | v = new double[n+1];
|
---|
1212 | work = new double[ptrows+1];
|
---|
1213 |
|
---|
1214 | //
|
---|
1215 | // prepare PT
|
---|
1216 | //
|
---|
1217 | for(i=1; i<=ptrows; i++)
|
---|
1218 | {
|
---|
1219 | for(j=1; j<=n; j++)
|
---|
1220 | {
|
---|
1221 | if( i==j )
|
---|
1222 | {
|
---|
1223 | pt[i,j] = 1;
|
---|
1224 | }
|
---|
1225 | else
|
---|
1226 | {
|
---|
1227 | pt[i,j] = 0;
|
---|
1228 | }
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 | if( m>=n )
|
---|
1232 | {
|
---|
1233 | for(i=Math.Min(n-1, ptrows-1); i>=1; i--)
|
---|
1234 | {
|
---|
1235 | vm = n-i;
|
---|
1236 | ip1 = i+1;
|
---|
1237 | i1_ = (ip1) - (1);
|
---|
1238 | for(i_=1; i_<=vm;i_++)
|
---|
1239 | {
|
---|
1240 | v[i_] = qp[i,i_+i1_];
|
---|
1241 | }
|
---|
1242 | v[1] = 1;
|
---|
1243 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i+1, n, ref work);
|
---|
1244 | }
|
---|
1245 | }
|
---|
1246 | else
|
---|
1247 | {
|
---|
1248 | for(i=Math.Min(m, ptrows); i>=1; i--)
|
---|
1249 | {
|
---|
1250 | vm = n-i+1;
|
---|
1251 | i1_ = (i) - (1);
|
---|
1252 | for(i_=1; i_<=vm;i_++)
|
---|
1253 | {
|
---|
1254 | v[i_] = qp[i,i_+i1_];
|
---|
1255 | }
|
---|
1256 | v[1] = 1;
|
---|
1257 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i, n, ref work);
|
---|
1258 | }
|
---|
1259 | }
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 |
|
---|
1263 | /*************************************************************************
|
---|
1264 | Obsolete 1-based subroutine.
|
---|
1265 | See RMatrixBDMultiplyByP for 0-based replacement.
|
---|
1266 | *************************************************************************/
|
---|
1267 | public static void multiplybypfrombidiagonal(ref double[,] qp,
|
---|
1268 | int m,
|
---|
1269 | int n,
|
---|
1270 | ref double[] taup,
|
---|
1271 | ref double[,] z,
|
---|
1272 | int zrows,
|
---|
1273 | int zcolumns,
|
---|
1274 | bool fromtheright,
|
---|
1275 | bool dotranspose)
|
---|
1276 | {
|
---|
1277 | int i = 0;
|
---|
1278 | int ip1 = 0;
|
---|
1279 | double[] v = new double[0];
|
---|
1280 | double[] work = new double[0];
|
---|
1281 | int vm = 0;
|
---|
1282 | int mx = 0;
|
---|
1283 | int i1 = 0;
|
---|
1284 | int i2 = 0;
|
---|
1285 | int istep = 0;
|
---|
1286 | int i_ = 0;
|
---|
1287 | int i1_ = 0;
|
---|
1288 |
|
---|
1289 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
1290 | {
|
---|
1291 | return;
|
---|
1292 | }
|
---|
1293 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
1294 |
|
---|
1295 | //
|
---|
1296 | // init
|
---|
1297 | //
|
---|
1298 | mx = Math.Max(m, n);
|
---|
1299 | mx = Math.Max(mx, zrows);
|
---|
1300 | mx = Math.Max(mx, zcolumns);
|
---|
1301 | v = new double[mx+1];
|
---|
1302 | work = new double[mx+1];
|
---|
1303 | v = new double[mx+1];
|
---|
1304 | work = new double[mx+1];
|
---|
1305 | if( m>=n )
|
---|
1306 | {
|
---|
1307 |
|
---|
1308 | //
|
---|
1309 | // setup
|
---|
1310 | //
|
---|
1311 | if( fromtheright )
|
---|
1312 | {
|
---|
1313 | i1 = n-1;
|
---|
1314 | i2 = 1;
|
---|
1315 | istep = -1;
|
---|
1316 | }
|
---|
1317 | else
|
---|
1318 | {
|
---|
1319 | i1 = 1;
|
---|
1320 | i2 = n-1;
|
---|
1321 | istep = +1;
|
---|
1322 | }
|
---|
1323 | if( !dotranspose )
|
---|
1324 | {
|
---|
1325 | i = i1;
|
---|
1326 | i1 = i2;
|
---|
1327 | i2 = i;
|
---|
1328 | istep = -istep;
|
---|
1329 | }
|
---|
1330 |
|
---|
1331 | //
|
---|
1332 | // Process
|
---|
1333 | //
|
---|
1334 | if( n-1>0 )
|
---|
1335 | {
|
---|
1336 | i = i1;
|
---|
1337 | do
|
---|
1338 | {
|
---|
1339 | vm = n-i;
|
---|
1340 | ip1 = i+1;
|
---|
1341 | i1_ = (ip1) - (1);
|
---|
1342 | for(i_=1; i_<=vm;i_++)
|
---|
1343 | {
|
---|
1344 | v[i_] = qp[i,i_+i1_];
|
---|
1345 | }
|
---|
1346 | v[1] = 1;
|
---|
1347 | if( fromtheright )
|
---|
1348 | {
|
---|
1349 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i+1, n, ref work);
|
---|
1350 | }
|
---|
1351 | else
|
---|
1352 | {
|
---|
1353 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n, 1, zcolumns, ref work);
|
---|
1354 | }
|
---|
1355 | i = i+istep;
|
---|
1356 | }
|
---|
1357 | while( i!=i2+istep );
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | else
|
---|
1361 | {
|
---|
1362 |
|
---|
1363 | //
|
---|
1364 | // setup
|
---|
1365 | //
|
---|
1366 | if( fromtheright )
|
---|
1367 | {
|
---|
1368 | i1 = m;
|
---|
1369 | i2 = 1;
|
---|
1370 | istep = -1;
|
---|
1371 | }
|
---|
1372 | else
|
---|
1373 | {
|
---|
1374 | i1 = 1;
|
---|
1375 | i2 = m;
|
---|
1376 | istep = +1;
|
---|
1377 | }
|
---|
1378 | if( !dotranspose )
|
---|
1379 | {
|
---|
1380 | i = i1;
|
---|
1381 | i1 = i2;
|
---|
1382 | i2 = i;
|
---|
1383 | istep = -istep;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | //
|
---|
1387 | // Process
|
---|
1388 | //
|
---|
1389 | i = i1;
|
---|
1390 | do
|
---|
1391 | {
|
---|
1392 | vm = n-i+1;
|
---|
1393 | i1_ = (i) - (1);
|
---|
1394 | for(i_=1; i_<=vm;i_++)
|
---|
1395 | {
|
---|
1396 | v[i_] = qp[i,i_+i1_];
|
---|
1397 | }
|
---|
1398 | v[1] = 1;
|
---|
1399 | if( fromtheright )
|
---|
1400 | {
|
---|
1401 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i, n, ref work);
|
---|
1402 | }
|
---|
1403 | else
|
---|
1404 | {
|
---|
1405 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n, 1, zcolumns, ref work);
|
---|
1406 | }
|
---|
1407 | i = i+istep;
|
---|
1408 | }
|
---|
1409 | while( i!=i2+istep );
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 |
|
---|
1414 | /*************************************************************************
|
---|
1415 | Obsolete 1-based subroutine.
|
---|
1416 | See RMatrixBDUnpackDiagonals for 0-based replacement.
|
---|
1417 | *************************************************************************/
|
---|
1418 | public static void unpackdiagonalsfrombidiagonal(ref double[,] b,
|
---|
1419 | int m,
|
---|
1420 | int n,
|
---|
1421 | ref bool isupper,
|
---|
1422 | ref double[] d,
|
---|
1423 | ref double[] e)
|
---|
1424 | {
|
---|
1425 | int i = 0;
|
---|
1426 |
|
---|
1427 | isupper = m>=n;
|
---|
1428 | if( m==0 | n==0 )
|
---|
1429 | {
|
---|
1430 | return;
|
---|
1431 | }
|
---|
1432 | if( isupper )
|
---|
1433 | {
|
---|
1434 | d = new double[n+1];
|
---|
1435 | e = new double[n+1];
|
---|
1436 | for(i=1; i<=n-1; i++)
|
---|
1437 | {
|
---|
1438 | d[i] = b[i,i];
|
---|
1439 | e[i] = b[i,i+1];
|
---|
1440 | }
|
---|
1441 | d[n] = b[n,n];
|
---|
1442 | }
|
---|
1443 | else
|
---|
1444 | {
|
---|
1445 | d = new double[m+1];
|
---|
1446 | e = new double[m+1];
|
---|
1447 | for(i=1; i<=m-1; i++)
|
---|
1448 | {
|
---|
1449 | d[i] = b[i,i];
|
---|
1450 | e[i] = b[i+1,i];
|
---|
1451 | }
|
---|
1452 | d[m] = b[m,m];
|
---|
1453 | }
|
---|
1454 | }
|
---|
1455 | }
|
---|