Free cookie consent management tool by TermsFeed Policy Generator

source: branches/CEDMA-Exporter-715/sources/HeuristicLab.LinearRegression/3.2/LinearRegressionOperator.cs @ 3494

Last change on this file since 3494 was 2154, checked in by gkronber, 16 years ago

Added linear regression plugin. #697

File size: 7.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System;
22using System.Collections.Generic;
23using System.Linq;
24using System.Text;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.DataAnalysis;
28using HeuristicLab.GP;
29using HeuristicLab.GP.StructureIdentification;
30
31namespace HeuristicLab.LinearRegression {
32  public class LinearRegressionOperator : OperatorBase {
33    private static double constant = 1.0;
34
35    public LinearRegressionOperator() {
36      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
37      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
38      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("AllowedFeatures", "List of indexes of allowed features", typeof(ItemList<IntData>), VariableKind.In));
41      AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IFunctionTree), VariableKind.Out | VariableKind.New));
42      AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New | VariableKind.Out));
43      AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New | VariableKind.Out));
44    }
45
46    public override IOperation Apply(IScope scope) {
47      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
48      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
49      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
50      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
51      ItemList<IntData> allowedFeatures = GetVariableValue<ItemList<IntData>>("AllowedFeatures", scope, true);
52      List<int> allowedRows = CalculateAllowedRows(dataset, allowedFeatures, targetVariable, start, end);
53
54      List<IntData> disallowedFeatures = new List<IntData>();
55      foreach (IntData allowedFeature in allowedFeatures) {
56        if (IsAlmost(dataset.GetMinimum(allowedFeature.Data, start, end), 0.0) &&
57            IsAlmost(dataset.GetMaximum(allowedFeature.Data, start, end), 0.0))
58          disallowedFeatures.Add(allowedFeature);
59      }
60      foreach (IntData disallowedFeature in disallowedFeatures)
61        allowedFeatures.Remove(disallowedFeature);
62
63      double[,] inputMatrix = PrepareInputMatrix(dataset, allowedFeatures, allowedRows);
64      double[] targetVector = PrepareTargetVector(dataset, targetVariable, allowedRows);
65      double[] coefficients = CalculateCoefficients(inputMatrix, targetVector);
66      IFunctionTree tree = CreateModel(coefficients, allowedFeatures);
67
68      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), tree));
69      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(tree.Size)));
70      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(tree.Height)));
71      return null;
72    }
73
74    private bool IsAlmost(double x, double y) {
75      return Math.Abs(x - y) < 1.0E-12;
76    }
77
78    private IFunctionTree CreateModel(double[] coefficients, ItemList<IntData> allowedFeatures) {
79      IFunctionTree root = new Addition().GetTreeNode();
80      IFunctionTree actNode = root;
81
82      Queue<IFunctionTree> nodes = new Queue<IFunctionTree>();
83      GP.StructureIdentification.Variable v;
84      for (int i = 0; i < coefficients.Length - 1; i++) {
85        v = new GP.StructureIdentification.Variable();
86        v.GetVariable(GP.StructureIdentification.Variable.INDEX).Value = new ConstrainedIntData(allowedFeatures[i].Data);
87        v.GetVariable(GP.StructureIdentification.Variable.WEIGHT).Value = new ConstrainedDoubleData(coefficients[i]);
88        v.GetVariable(GP.StructureIdentification.Variable.OFFSET).Value = new ConstrainedIntData(0);
89        nodes.Enqueue(v.GetTreeNode());
90      }
91      GP.StructureIdentification.Constant c = new Constant();
92      c.GetVariable(GP.StructureIdentification.Constant.VALUE).Value = new ConstrainedDoubleData(coefficients[coefficients.Length - 1] * 1.0);
93      nodes.Enqueue(c.GetTreeNode());
94
95      IFunctionTree newTree;
96      while (nodes.Count != 1) {
97        newTree = new Addition().GetTreeNode();
98        newTree.AddSubTree(nodes.Dequeue());
99        newTree.AddSubTree(nodes.Dequeue());
100        nodes.Enqueue(newTree);
101      }
102
103      return nodes.Dequeue();
104    }
105
106    private double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) {
107      double[] weights = new double[targetVector.Length];
108      double[] coefficients = new double[inputMatrix.GetLength(1)];
109      for(int i=0;i<weights.Length;i++) weights[i] = 1.0;
110      // call external ALGLIB solver
111      leastsquares.buildgeneralleastsquares(ref targetVector, ref weights, ref inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), ref coefficients);
112
113      return coefficients;
114    }
115
116    //returns list of valid row indexes (rows without NaN values)
117    private List<int> CalculateAllowedRows(Dataset dataset, ItemList<IntData> allowedFeatures, int targetVariable, int start, int end) {
118      List<int> allowedRows = new List<int>();
119      bool add;
120      for (int row = start; row < end; row++) {
121        add = true;
122        for (int col = 0; col < allowedFeatures.Count && add == true; col++) {
123          if (double.IsNaN(dataset.GetValue(row, allowedFeatures[col].Data)) ||
124              double.IsNaN(dataset.GetValue(row, targetVariable)))
125            add = false;
126        }
127        if (add)
128          allowedRows.Add(row);
129        add = true;
130      }
131      return allowedRows;
132    }
133
134    private double[,] PrepareInputMatrix(Dataset dataset, ItemList<IntData> allowedFeatures, List<int> allowedRows) {
135      int rowCount = allowedRows.Count;
136      double[,] matrix = new double[rowCount, allowedFeatures.Count + 1];
137      for (int col = 0; col < allowedFeatures.Count; col++) {
138        for (int row = 0; row < allowedRows.Count; row++)
139          matrix[row, col] = dataset.GetValue(allowedRows[row], allowedFeatures[col].Data);
140      }
141      //add constant 1.0 in last column
142      for (int i = 0; i < rowCount; i++)
143        matrix[i, allowedFeatures.Count] = constant;
144      return matrix;
145    }
146
147    private double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
148      int rowCount = allowedRows.Count;
149      double[] targetVector = new double[rowCount];
150      double[] samples = dataset.Samples;
151      for (int row = 0; row < rowCount; row++) {
152        targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
153      }
154      return targetVector;
155    }
156  }
157}
Note: See TracBrowser for help on using the repository browser.