Free cookie consent management tool by TermsFeed Policy Generator

source: branches/CEDMA-Exporter-715/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/GPEvaluatorBase.cs @ 2273

Last change on this file since 2273 was 2130, checked in by gkronber, 15 years ago
  • Removed "AutoRegressive" parameter for GP completely. User is responsible to set allowed features correctly (including the target variable for auto regression)
  • Setting allowed features correctly in the CEDMA dispatcher (this fixes the problem of incorrect input variables in SVM)

#683 (nu-SVR engine doesn't filter allowed features to remove the target variable)

File size: 5.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.DataAnalysis;
30
31namespace HeuristicLab.GP.StructureIdentification {
32  public abstract class GPEvaluatorBase : OperatorBase {
33    public GPEvaluatorBase()
34      : base() {
35      AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In));
36      AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
37      AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
38      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
39      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
42      AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training samples in dataset", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training samples in dataset", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
46      AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the target variable for autoregressive modelling", typeof(BoolData), VariableKind.In));
47    }
48
49    public override IOperation Apply(IScope scope) {
50      // get all variable values
51      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
52      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
53      IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
54      double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
55      int treeSize = scope.GetVariableValue<IntData>("TreeSize", true).Data;
56      double totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
57      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
58      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
59      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
60      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
61      bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, true).Data;
62      ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true);
63      evaluator.PrepareForEvaluation(dataset, targetVariable, trainingStart, trainingEnd, punishmentFactor, functionTree);
64
65      double[] backupValues = null;
66      // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array
67      if (useEstimatedValues &&
68        (backupValues == null || backupValues.Length != end - start)) {
69        backupValues = new double[end - start];
70        for (int i = start; i < end; i++) {
71          backupValues[i - start] = dataset.GetValue(i, targetVariable);
72        }
73      }
74      dataset.FireChangeEvents = false;
75
76      Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues);
77
78      // restore the values of the target variable from the backup array if necessary
79      if (useEstimatedValues) {
80        for (int i = start; i < end; i++) {
81          dataset.SetValue(i, targetVariable, backupValues[i - start]);
82        }
83      }
84      dataset.FireChangeEvents = true;
85      dataset.FireChanged();
86
87      // update the value of total evaluated nodes
88      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (end - start);
89      return null;
90    }
91
92    public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues);
93  }
94}
Note: See TracBrowser for help on using the repository browser.