1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
27 | public class KotanchekFunction : ArtificialRegressionDataDescriptor {
|
---|
28 |
|
---|
29 | public override string Name { get { return "Vladislavleva-1 F1(X1,X2) = exp(-(X1 - 1))² / (1.2 + (X2 -2.5)²"; } }
|
---|
30 | public override string Description {
|
---|
31 | get {
|
---|
32 | return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
|
---|
33 | + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
|
---|
34 | + "Function: F1(X1, X2) = exp(-(X1 - 1))² / (1.2 + (X2 -2.5)²" + Environment.NewLine
|
---|
35 | + "Training Data: 100 points X1, X2 = Rand(0.3, 4)" + Environment.NewLine
|
---|
36 | + "Test Data: 45*45 points (X1, X2) = (-0.2:0.1:4.2)" + Environment.NewLine
|
---|
37 | + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps";
|
---|
38 | }
|
---|
39 | }
|
---|
40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
41 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "Y" }; } }
|
---|
42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
|
---|
43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
44 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
45 | protected override int TestPartitionStart { get { return 100; } }
|
---|
46 | protected override int TestPartitionEnd { get { return 100 + (45 * 45); } }
|
---|
47 |
|
---|
48 | protected override List<List<double>> GenerateValues() {
|
---|
49 | List<List<double>> data = new List<List<double>>();
|
---|
50 |
|
---|
51 | List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-0.2, 4.2, 0.1).ToList();
|
---|
52 | List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
|
---|
53 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
54 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
55 | data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0.3, 4).ToList());
|
---|
56 | data[i].AddRange(combinations[i]);
|
---|
57 | }
|
---|
58 |
|
---|
59 | double x1, x2;
|
---|
60 | List<double> results = new List<double>();
|
---|
61 | for (int i = 0; i < data[0].Count; i++) {
|
---|
62 | x1 = data[0][i];
|
---|
63 | x2 = data[1][i];
|
---|
64 | results.Add(Math.Exp(-Math.Pow(x1 - 1, 2)) / (1.2 + Math.Pow(x2 - 2.5, 2)));
|
---|
65 | }
|
---|
66 | data.Add(results);
|
---|
67 |
|
---|
68 | return data;
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|