1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
27 | public class KeijzerFunctionTen : ArtificialRegressionDataDescriptor {
|
---|
28 |
|
---|
29 | public override string Name { get { return "Keijzer 10 f(x, y) = x ^ y"; } }
|
---|
30 | public override string Description {
|
---|
31 | get {
|
---|
32 | return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
|
---|
33 | + "Authors: Maarten Keijzer" + Environment.NewLine
|
---|
34 | + "Function: f(x, y) = x ^ y" + Environment.NewLine
|
---|
35 | + "range(train): 100 Train cases x,y = rnd(0, 1)" + Environment.NewLine
|
---|
36 | + "range(test): x,y = [0:0.01:1]" + Environment.NewLine
|
---|
37 | + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
|
---|
38 | }
|
---|
39 | }
|
---|
40 | protected override string TargetVariable { get { return "F"; } }
|
---|
41 | protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
|
---|
42 | protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
|
---|
43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
44 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
45 | protected override int TestPartitionStart { get { return 100; } }
|
---|
46 | protected override int TestPartitionEnd { get { return 100 + (101 * 101); } }
|
---|
47 |
|
---|
48 | protected override List<List<double>> GenerateValues() {
|
---|
49 | List<List<double>> data = new List<List<double>>();
|
---|
50 |
|
---|
51 | List<double> oneVariableTestData = ValueGenerator.GenerateSteps(0, 1, 0.01m).Select(v => (double)v).ToList();
|
---|
52 | List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
|
---|
53 |
|
---|
54 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
55 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
56 | data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0, 1).ToList());
|
---|
57 | data[i].AddRange(combinations[i]);
|
---|
58 | }
|
---|
59 |
|
---|
60 | double x, y;
|
---|
61 | List<double> results = new List<double>();
|
---|
62 | for (int i = 0; i < data[0].Count; i++) {
|
---|
63 | x = data[0][i];
|
---|
64 | y = data[1][i];
|
---|
65 | results.Add(Math.Pow(x, y));
|
---|
66 | }
|
---|
67 | data.Add(results);
|
---|
68 |
|
---|
69 | return data;
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|