1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item("Autoregressive TimeSeries Model", "A linear autoregressive time series model used to predict future values.")]
|
---|
32 | public class TimeSeriesPrognosisAutoRegressiveModel : NamedItem, ITimeSeriesPrognosisModel {
|
---|
33 | [Storable]
|
---|
34 | public double[] Phi { get; private set; }
|
---|
35 | [Storable]
|
---|
36 | public double Constant { get; private set; }
|
---|
37 | [Storable]
|
---|
38 | public string TargetVariable { get; private set; }
|
---|
39 |
|
---|
40 | public int TimeOffset { get { return Phi.Length; } }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | protected TimeSeriesPrognosisAutoRegressiveModel(bool deserializing) : base(deserializing) { }
|
---|
44 | protected TimeSeriesPrognosisAutoRegressiveModel(TimeSeriesPrognosisAutoRegressiveModel original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | this.Phi = (double[])original.Phi.Clone();
|
---|
47 | this.Constant = original.Constant;
|
---|
48 | this.TargetVariable = original.TargetVariable;
|
---|
49 | }
|
---|
50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
51 | return new TimeSeriesPrognosisAutoRegressiveModel(this, cloner);
|
---|
52 | }
|
---|
53 | public TimeSeriesPrognosisAutoRegressiveModel(string targetVariable, double[] phi, double constant)
|
---|
54 | : base("AR(1) Model") {
|
---|
55 | Phi = (double[])phi.Clone();
|
---|
56 | Constant = constant;
|
---|
57 | TargetVariable = targetVariable;
|
---|
58 | }
|
---|
59 |
|
---|
60 | public IEnumerable<IEnumerable<double>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
|
---|
61 | var rowsEnumerator = rows.GetEnumerator();
|
---|
62 | var horizonsEnumerator = horizons.GetEnumerator();
|
---|
63 | var targetValues = dataset.GetReadOnlyDoubleValues(TargetVariable);
|
---|
64 | // produce a n-step forecast for all rows
|
---|
65 | while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
|
---|
66 | int row = rowsEnumerator.Current;
|
---|
67 | int horizon = horizonsEnumerator.Current;
|
---|
68 | if (row - TimeOffset < 0) {
|
---|
69 | yield return Enumerable.Repeat(double.NaN, horizon);
|
---|
70 | continue;
|
---|
71 | }
|
---|
72 |
|
---|
73 | double[] prognosis = new double[horizon];
|
---|
74 | for (int h = 0; h < horizon; h++) {
|
---|
75 | double estimatedValue = 0.0;
|
---|
76 | for (int i = 1; i <= TimeOffset; i++) {
|
---|
77 | int offset = h - i;
|
---|
78 | if (offset >= 0) estimatedValue += prognosis[offset] * Phi[i - 1];
|
---|
79 | else estimatedValue += targetValues[row + offset] * Phi[i - 1];
|
---|
80 |
|
---|
81 | }
|
---|
82 | estimatedValue += Constant;
|
---|
83 | prognosis[h] = estimatedValue;
|
---|
84 | }
|
---|
85 |
|
---|
86 | yield return prognosis;
|
---|
87 | }
|
---|
88 |
|
---|
89 | if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
|
---|
90 | throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
|
---|
91 | }
|
---|
92 |
|
---|
93 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
94 | var targetVariables = dataset.GetReadOnlyDoubleValues(TargetVariable);
|
---|
95 | foreach (int row in rows) {
|
---|
96 | double estimatedValue = 0.0;
|
---|
97 | if (row - TimeOffset < 0) {
|
---|
98 | yield return double.NaN;
|
---|
99 | continue;
|
---|
100 | }
|
---|
101 |
|
---|
102 | for (int i = 1; i <= TimeOffset; i++) {
|
---|
103 | estimatedValue += targetVariables[row - i] * Phi[i - 1];
|
---|
104 | }
|
---|
105 | estimatedValue += Constant;
|
---|
106 | yield return estimatedValue;
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
111 | return new TimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
|
---|
112 | }
|
---|
113 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
114 | throw new NotSupportedException();
|
---|
115 | }
|
---|
116 |
|
---|
117 | }
|
---|
118 | }
|
---|