1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
31 | [StorableClass]
|
---|
32 | [Item("SymbolicClassificationPruningOperator", "An operator which prunes symbolic classificaton trees.")]
|
---|
33 | public class SymbolicClassificationPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
|
---|
34 | private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
|
---|
35 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
36 |
|
---|
37 | #region parameter properties
|
---|
38 | public ILookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
39 | get { return (ILookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
40 | }
|
---|
41 | #endregion
|
---|
42 |
|
---|
43 | protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator original, Cloner cloner)
|
---|
44 | : base(original, cloner) {
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new SymbolicClassificationPruningOperator(this, cloner);
|
---|
49 | }
|
---|
50 |
|
---|
51 | [StorableConstructor]
|
---|
52 | protected SymbolicClassificationPruningOperator(bool deserializing) : base(deserializing) { }
|
---|
53 |
|
---|
54 | public SymbolicClassificationPruningOperator() {
|
---|
55 | Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, new SymbolicClassificationSolutionImpactValuesCalculator()));
|
---|
56 | Parameters.Add(new LookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName));
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected override ISymbolicDataAnalysisModel CreateModel() {
|
---|
60 | var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
|
---|
61 | var problemData = (IClassificationProblemData)ProblemData;
|
---|
62 | var rows = problemData.TrainingIndices;
|
---|
63 | model.RecalculateModelParameters(problemData, rows);
|
---|
64 | return model;
|
---|
65 | }
|
---|
66 |
|
---|
67 | protected override double Evaluate(IDataAnalysisModel model) {
|
---|
68 | var classificationModel = (IClassificationModel)model;
|
---|
69 | var classificationProblemData = (IClassificationProblemData)ProblemData;
|
---|
70 | var trainingIndices = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size);
|
---|
71 | var estimatedValues = classificationModel.GetEstimatedClassValues(ProblemData.Dataset, trainingIndices);
|
---|
72 | var targetValues = ProblemData.Dataset.GetDoubleValues(classificationProblemData.TargetVariable, trainingIndices);
|
---|
73 | OnlineCalculatorError errorState;
|
---|
74 | var quality = OnlineAccuracyCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
75 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
76 | return quality;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|