[4041] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12018] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4041] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
[4068] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[4041] | 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
[4068] | 28 | using HeuristicLab.Selection;
|
---|
[4165] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[4902] | 30 | using HeuristicLab.Common;
|
---|
[4041] | 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.NSGA2 {
|
---|
[4167] | 33 | [Item("CrowdedTournamentSelector", "Selects solutions using tournament selection by using the partial order defined in Deb et al. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.")]
|
---|
[4165] | 34 | [StorableClass]
|
---|
[4041] | 35 | public class CrowdedTournamentSelector : Selector, IMultiObjectiveSelector, IStochasticOperator {
|
---|
[4045] | 36 | public ILookupParameter<BoolArray> MaximizationParameter {
|
---|
| 37 | get { return (ILookupParameter<BoolArray>)Parameters["Maximization"]; }
|
---|
| 38 | }
|
---|
| 39 | public IValueLookupParameter<IntValue> NumberOfSelectedSubScopesParameter {
|
---|
| 40 | get { return (IValueLookupParameter<IntValue>)Parameters["NumberOfSelectedSubScopes"]; }
|
---|
| 41 | }
|
---|
| 42 | public IValueParameter<BoolValue> CopySelectedParameter {
|
---|
| 43 | get { return (IValueParameter<BoolValue>)Parameters["CopySelected"]; }
|
---|
| 44 | }
|
---|
| 45 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 46 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
| 47 | }
|
---|
[4041] | 48 | public ILookupParameter<ItemArray<DoubleArray>> QualitiesParameter {
|
---|
| 49 | get { return (ILookupParameter<ItemArray<DoubleArray>>)Parameters["Qualities"]; }
|
---|
| 50 | }
|
---|
| 51 | public IScopeTreeLookupParameter<IntValue> RankParameter {
|
---|
| 52 | get { return (IScopeTreeLookupParameter<IntValue>)Parameters["Rank"]; }
|
---|
| 53 | }
|
---|
| 54 | public IScopeTreeLookupParameter<DoubleValue> CrowdingDistanceParameter {
|
---|
| 55 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["CrowdingDistance"]; }
|
---|
| 56 | }
|
---|
| 57 | public IValueLookupParameter<IntValue> GroupSizeParameter {
|
---|
| 58 | get { return (IValueLookupParameter<IntValue>)Parameters["GroupSize"]; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public BoolValue CopySelected {
|
---|
| 62 | get { return CopySelectedParameter.Value; }
|
---|
| 63 | set { CopySelectedParameter.Value = value; }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[4902] | 66 | [StorableConstructor]
|
---|
| 67 | protected CrowdedTournamentSelector(bool deserializing) : base(deserializing) { }
|
---|
| 68 | protected CrowdedTournamentSelector(CrowdedTournamentSelector original, Cloner cloner) : base(original, cloner) { }
|
---|
[4041] | 69 | public CrowdedTournamentSelector()
|
---|
| 70 | : base() {
|
---|
[4052] | 71 | Parameters.Add(new LookupParameter<BoolArray>("Maximization", "For each objective determines whether it should be maximized or minimized."));
|
---|
| 72 | Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfSelectedSubScopes", "The number of sub-scopes that should be selected."));
|
---|
| 73 | Parameters.Add(new ValueParameter<BoolValue>("CopySelected", "True if the selected scopes are to be copied (cloned) otherwise they're moved."));
|
---|
| 74 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator."));
|
---|
[4041] | 75 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>("Qualities", "The solutions' qualities vector."));
|
---|
| 76 | Parameters.Add(new ScopeTreeLookupParameter<IntValue>("Rank", "The solutions' domination rank."));
|
---|
| 77 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("CrowdingDistance", "The solutions' crowding distance values."));
|
---|
| 78 | Parameters.Add(new ValueLookupParameter<IntValue>("GroupSize", "The size of the group from which the best will be chosen.", new IntValue(2)));
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | protected override IScope[] Select(List<IScope> scopes) {
|
---|
| 82 | IRandom random = RandomParameter.ActualValue;
|
---|
| 83 | List<int> ranks = RankParameter.ActualValue.Select(x => x.Value).ToList();
|
---|
| 84 | List<double> crowdingDistance = CrowdingDistanceParameter.ActualValue.Select(x => x.Value).ToList();
|
---|
| 85 | int count = NumberOfSelectedSubScopesParameter.ActualValue.Value;
|
---|
| 86 | int groupSize = GroupSizeParameter.ActualValue.Value;
|
---|
| 87 | bool copy = CopySelected.Value;
|
---|
| 88 | IScope[] selected = new IScope[count];
|
---|
| 89 |
|
---|
| 90 | for (int i = 0; i < count; i++) {
|
---|
| 91 | int best = random.Next(scopes.Count);
|
---|
| 92 | int index;
|
---|
| 93 | for (int j = 1; j < groupSize; j++) {
|
---|
| 94 | index = random.Next(scopes.Count);
|
---|
| 95 | if (ranks[best] > ranks[index]
|
---|
| 96 | || ranks[best] == ranks[index]
|
---|
| 97 | && crowdingDistance[best] < crowdingDistance[index]) {
|
---|
| 98 | best = index;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | if (copy)
|
---|
| 103 | selected[i] = (IScope)scopes[best].Clone();
|
---|
| 104 | else {
|
---|
| 105 | selected[i] = scopes[best];
|
---|
| 106 | scopes.RemoveAt(best);
|
---|
| 107 | ranks.RemoveAt(best);
|
---|
| 108 | crowdingDistance.RemoveAt(best);
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | return selected;
|
---|
| 113 | }
|
---|
[4902] | 114 |
|
---|
| 115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 116 | return new CrowdedTournamentSelector(this, cloner);
|
---|
| 117 | }
|
---|
[4041] | 118 | }
|
---|
| 119 | }
|
---|