Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ALPS/HeuristicLab.Algorithms.ALPS/3.3/AlpsGeneticAlgorithmMainLoop.cs @ 11585

Last change on this file since 11585 was 11585, checked in by pfleck, 10 years ago

#2269 Implemented EldersEmigrator.

  • Implemented EldersSelector and ShiftToRightMigrator.
File size: 12.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Algorithms.GeneticAlgorithm;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Optimization;
29using HeuristicLab.Optimization.Operators;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Selection;
33
34namespace HeuristicLab.Algorithms.ALPS {
35
36  [Item("AlpsGeneticAlgorithmMainLoop", "An ALPS genetic algorithm main loop operator.")]
37  [StorableClass]
38  public sealed class AlpsGeneticAlgorithmMainLoop : AlgorithmOperator {
39    #region Parameter Properties
40    public ILookupParameter<IRandom> RandomParameter {
41      get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
42    }
43    /*public ILookupParameter<BoolValue> MaximizationParameter {
44      get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
45    }
46    public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
47      get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
48    }
49    public ILookupParameter<DoubleValue> BestKnownQualityParameter {
50      get { return (ILookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
51    }
52    public ILookupParameter<IOperator> EvaluatorParameter {
53      get { return (ILookupParameter<IOperator>)Parameters["Evaluator"]; }
54    }*/
55    public ILookupParameter<IntValue> PopulationSizeParameter {
56      get { return (ILookupParameter<IntValue>)Parameters["PopulationSize"]; }
57    }
58    public ILookupParameter<IntValue> MaximumGenerationsParameter {
59      get { return (ILookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
60    }
61    public ILookupParameter<IOperator> SelectorParameter {
62      get { return (ILookupParameter<IOperator>)Parameters["Selector"]; }
63    }
64    public ILookupParameter<IOperator> CrossoverParameter {
65      get { return (ILookupParameter<IOperator>)Parameters["Crossover"]; }
66    }
67    public ILookupParameter<PercentValue> MutationProbabilityParameter {
68      get { return (ILookupParameter<PercentValue>)Parameters["MutationProbability"]; }
69    }
70    public ILookupParameter<IOperator> MutatorParameter {
71      get { return (ILookupParameter<IOperator>)Parameters["Mutator"]; }
72    }
73    public ILookupParameter<IntValue> ElitesParameter {
74      get { return (ILookupParameter<IntValue>)Parameters["Elites"]; }
75    }
76    public IValueLookupParameter<BoolValue> ReevaluateElitesParameter {
77      get { return (IValueLookupParameter<BoolValue>)Parameters["ReevaluateElites"]; }
78    }
79    public ILookupParameter<ResultCollection> ResultsParameter {
80      get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
81    }
82    public ILookupParameter<IOperator> AnalyzerParameter {
83      get { return (ILookupParameter<IOperator>)Parameters["Analyzer"]; }
84    }
85    public ILookupParameter<IOperator> LayerAnalyzerParameter {
86      get { return (ILookupParameter<IOperator>)Parameters["LayerAnalyzer"]; }
87    }
88    #endregion
89
90    public GeneticAlgorithmMainLoop MainOperator {
91      get { return OperatorGraph.Iterate().OfType<GeneticAlgorithmMainLoop>().First(); }
92    }
93
94    [StorableConstructor]
95    private AlpsGeneticAlgorithmMainLoop(bool deserializing)
96      : base(deserializing) { }
97    private AlpsGeneticAlgorithmMainLoop(AlpsGeneticAlgorithmMainLoop original, Cloner cloner)
98      : base(original, cloner) { }
99    public override IDeepCloneable Clone(Cloner cloner) {
100      return new AlpsGeneticAlgorithmMainLoop(this, cloner);
101    }
102    public AlpsGeneticAlgorithmMainLoop()
103      : base() {
104      Parameters.Add(new LookupParameter<IRandom>("Random", "A pseudo random number generator."));
105      /*Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
106      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
107      Parameters.Add(new LookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
108      Parameters.Add(new LookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions."));*/
109      Parameters.Add(new LookupParameter<IntValue>("PopulationSize", "The size of the population of solutions."));
110      Parameters.Add(new LookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations that the algorithm should process."));
111      Parameters.Add(new LookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
112      Parameters.Add(new LookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
113      Parameters.Add(new LookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
114      Parameters.Add(new LookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
115      Parameters.Add(new LookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
116      Parameters.Add(new LookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
117      Parameters.Add(new LookupParameter<ResultCollection>("Results", "The results collection to store the results."));
118      Parameters.Add(new LookupParameter<IOperator>("Analyzer", "The operator used to the analyze all individuals."));
119      Parameters.Add(new LookupParameter<IOperator>("LayerAnalyzer", "The operator used to analyze each layer."));
120
121      var variableCreator = new VariableCreator() { Name = "Initialize" };
122      var resultsCollector = new ResultsCollector();
123      var initAnalyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
124      var initLayerAnalyzerProcessor = new SubScopesProcessor();
125      var initLayerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
126      var matingPoolCreator = new MatingPoolCreator() { Name = "Create Mating Pools" };
127      var matingPoolProcessor = new UniformSubScopesProcessor();
128      var mainOperator = PrepareGeneticAlgorithmMainLoop();
129      var layerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
130      var generationsIcrementor = new IntCounter() { Name = "Increment Generations" };
131      var evaluatedSolutionsReducer = new DataReducer() { Name = "Increment EvaluatedSolutions" };
132      var eldersEmigrator = new EldersEmigrator() { Name = "Emigrate Elders" };
133      var layerUpdator = new CombinedOperator() { Name = "Update Layers" };
134      var analyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
135      var generationsComparator = new Comparator() { Name = "Generations >= MaximumGenerations" };
136      var terminateBranch = new ConditionalBranch() { Name = "Terminate?" };
137
138      OperatorGraph.InitialOperator = variableCreator;
139
140      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0)));
141      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("GenerationsSinceLastRefresh", new IntValue(0)));
142      variableCreator.Successor = resultsCollector;
143
144      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
145      resultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("LayerResults", "Result set for each layer", "Results"));
146      resultsCollector.Successor = initAnalyzerPlaceholder;
147
148      initAnalyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
149      initAnalyzerPlaceholder.Successor = initLayerAnalyzerProcessor;
150
151      initLayerAnalyzerProcessor.Operators.Add(initLayerAnalyzerPlaceholder);
152      initLayerAnalyzerProcessor.Successor = matingPoolCreator;
153
154      initLayerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;
155      initLayerAnalyzerPlaceholder.Successor = null;
156
157      matingPoolCreator.Successor = matingPoolProcessor;
158
159      matingPoolProcessor.Parallel.Value = true;
160      matingPoolProcessor.Operator = mainOperator;
161      matingPoolProcessor.Successor = generationsIcrementor;
162
163      generationsIcrementor.ValueParameter.ActualName = "Generations";
164      generationsIcrementor.Increment = new IntValue(1);
165      generationsIcrementor.Successor = evaluatedSolutionsReducer;
166
167      evaluatedSolutionsReducer.ParameterToReduce.ActualName = "EvaluatedSolutions";
168      evaluatedSolutionsReducer.TargetParameter.ActualName = "EvaluatedSolutions";
169      evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
170      evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);
171      evaluatedSolutionsReducer.Successor = eldersEmigrator;
172
173      mainOperator.Successor = layerAnalyzerPlaceholder;
174
175      layerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;
176      layerAnalyzerPlaceholder.Successor = null;
177
178      eldersEmigrator.Successor = layerUpdator;
179
180      layerUpdator.Successor = analyzerPlaceholder;
181
182      analyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
183      analyzerPlaceholder.Successor = generationsComparator;
184
185      generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
186      generationsComparator.LeftSideParameter.ActualName = "Generations";
187      generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;
188      generationsComparator.ResultParameter.ActualName = "TerminateGenerations";
189      generationsComparator.Successor = terminateBranch;
190
191      terminateBranch.ConditionParameter.ActualName = "TerminateGenerations";
192      terminateBranch.FalseBranch = matingPoolCreator;
193    }
194
195    private GeneticAlgorithmMainLoop PrepareGeneticAlgorithmMainLoop() {
196      var mainLoop = new GeneticAlgorithmMainLoop();
197      var selector = mainLoop.OperatorGraph.Iterate().OfType<Placeholder>().First(o => o.OperatorParameter.ActualName == "Selector");
198      var crossover = mainLoop.OperatorGraph.Iterate().OfType<Placeholder>().First(o => o.OperatorParameter.ActualName == "Crossover");
199      var elitesMerger = mainLoop.OperatorGraph.Iterate().OfType<MergingReducer>().First();
200
201      // Operator starts with selector
202      mainLoop.OperatorGraph.InitialOperator = selector;
203
204      // Insert AgeCalculator between crossover and its successor
205      var crossoverSuccessor = crossover.Successor;
206      var ageCalculator = new DataReducer() { Name = "Calculate Age" };
207      ageCalculator.ParameterToReduce.ActualName = "Age";
208      ageCalculator.TargetParameter.ActualName = "Age";
209      ageCalculator.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Max);
210      ageCalculator.TargetOperation.Value = new ReductionOperation(ReductionOperations.Assign);
211      crossover.Successor = ageCalculator;
212      ageCalculator.Successor = crossoverSuccessor;
213
214      // Instead of generational loop after merging of elites, increment ages of all individuals
215      var processor = new UniformSubScopesProcessor();
216      var incrementor = new IntCounter() { Name = "Increment Age" };
217      processor.Operator = incrementor;
218      processor.Successor = null;
219      incrementor.ValueParameter.ActualName = "Age";
220      incrementor.Increment = new IntValue(1);
221      incrementor.Successor = null;
222      elitesMerger.Successor = processor;
223
224      // Parameterize
225      foreach (var stochasticOperator in mainLoop.OperatorGraph.Iterate().OfType<IStochasticOperator>())
226        stochasticOperator.RandomParameter.ActualName = "LocalRandom";
227      foreach (var stochasticBranch in mainLoop.OperatorGraph.Iterate().OfType<StochasticBranch>())
228        stochasticBranch.RandomParameter.ActualName = "LocalRandom";
229
230      // Remove unnessesary subtrees
231      //foreach (var @operator in mainLoop.OperatorGraph.Operators.OfType<SingleSuccessorOperator>().Where(o => o.Successor == selector))
232      //  @operator.Successor = null;
233
234      return mainLoop;
235    }
236  }
237}
Note: See TracBrowser for help on using the repository browser.