Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ALPS/HeuristicLab.Algorithms.ALPS/3.3/AlpsGeneticAlgorithm.cs @ 11813

Last change on this file since 11813 was 11678, checked in by pfleck, 10 years ago

#2269

  • Fixed bug when updating crossovers and mutators.
  • Made DataReducers Reduction- and TargetOperationParameter to ValueLookupParameter. This enables ALPS to make the age determination configurable.
File size: 27.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Analysis;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Operators;
30using HeuristicLab.Optimization;
31using HeuristicLab.Optimization.Operators;
32using HeuristicLab.Parameters;
33using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
34using HeuristicLab.PluginInfrastructure;
35using HeuristicLab.Random;
36using HeuristicLab.Selection;
37
38namespace HeuristicLab.Algorithms.ALPS {
39  [Item("ALPS Genetic Algorithm", "A genetic algorithm with an age-layered population structure.")]
40  [Creatable("Algorithms")]
41  [StorableClass]
42  public sealed class AlpsGeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent {
43    public string Filename { get; set; }
44
45    #region Problem Properties
46    public override Type ProblemType {
47      get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
48    }
49    public new ISingleObjectiveHeuristicOptimizationProblem Problem {
50      get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
51      set { base.Problem = value; }
52    }
53    #endregion
54
55    #region Parameter Properties
56    private IValueParameter<IntValue> SeedParameter {
57      get { return (IValueParameter<IntValue>)Parameters["Seed"]; }
58    }
59    private IValueParameter<BoolValue> SetSeedRandomlyParameter {
60      get { return (IValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
61    }
62    private IValueParameter<MultiAnalyzer> AnalyzerParameter {
63      get { return (IValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
64    }
65    private IValueParameter<MultiAnalyzer> LayerAnalyzerParameter {
66      get { return (IValueParameter<MultiAnalyzer>)Parameters["LayerAnalyzer"]; }
67    }
68    private IValueParameter<IntValue> NumberOfLayersParameter {
69      get { return (IValueParameter<IntValue>)Parameters["NumberOfLayers"]; }
70    }
71    private IValueParameter<IntValue> PopulationSizeParameter {
72      get { return (IValueParameter<IntValue>)Parameters["PopulationSize"]; }
73    }
74    private IValueParameter<IntValue> MaximumGenerationsParameter {
75      get { return (IValueParameter<IntValue>)Parameters["MaximumGenerations"]; }
76    }
77    private IValueParameter<AgingScheme> AgingSchemeParameter {
78      get { return (IValueParameter<AgingScheme>)Parameters["AgingScheme"]; }
79    }
80    private IValueParameter<IntValue> AgeGapParameter {
81      get { return (IValueParameter<IntValue>)Parameters["AgeGap"]; }
82    }
83    private IValueParameter<IntArray> AgeLimitsParameter {
84      get { return (IValueParameter<IntArray>)Parameters["AgeLimits"]; }
85    }
86    private IValueParameter<ReductionOperation> AgeInheritanceParameter {
87      get { return (IValueParameter<ReductionOperation>)Parameters["AgeInheritance"]; }
88    }
89    public IConstrainedValueParameter<ISelector> SelectorParameter {
90      get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
91    }
92    public IConstrainedValueParameter<ICrossover> CrossoverParameter {
93      get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
94    }
95    private IValueParameter<PercentValue> MutationProbabilityParameter {
96      get { return (IValueParameter<PercentValue>)Parameters["MutationProbability"]; }
97    }
98    public IConstrainedValueParameter<IManipulator> MutatorParameter {
99      get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
100    }
101    private IValueParameter<IntValue> ElitesParameter {
102      get { return (IValueParameter<IntValue>)Parameters["Elites"]; }
103    }
104    private IFixedValueParameter<BoolValue> ReevaluateElitesParameter {
105      get { return (IFixedValueParameter<BoolValue>)Parameters["ReevaluateElites"]; }
106    }
107    #endregion
108
109    #region Properties
110    public IntValue Seed {
111      get { return SeedParameter.Value; }
112      set { SeedParameter.Value = value; }
113    }
114    public BoolValue SetSeedRandomly {
115      get { return SetSeedRandomlyParameter.Value; }
116      set { SetSeedRandomlyParameter.Value = value; }
117    }
118    public MultiAnalyzer Analyzer {
119      get { return AnalyzerParameter.Value; }
120      set { AnalyzerParameter.Value = value; }
121    }
122    public MultiAnalyzer LayerAnalyzer {
123      get { return LayerAnalyzerParameter.Value; }
124      set { LayerAnalyzerParameter.Value = value; }
125    }
126    public IntValue NumberOfLayers {
127      get { return NumberOfLayersParameter.Value; }
128      set { NumberOfLayersParameter.Value = value; }
129    }
130
131    public IntValue PopulationSize {
132      get { return PopulationSizeParameter.Value; }
133      set { PopulationSizeParameter.Value = value; }
134    }
135    public IntValue MaximumGenerations {
136      get { return MaximumGenerationsParameter.Value; }
137      set { MaximumGenerationsParameter.Value = value; }
138    }
139    public AgingScheme AgingScheme {
140      get { return AgingSchemeParameter.Value; }
141      set { AgingSchemeParameter.Value = value; }
142    }
143    public IntValue AgeGap {
144      get { return AgeGapParameter.Value; }
145      set { AgeGapParameter.Value = value; }
146    }
147    public IntArray AgeLimits {
148      get { return AgeLimitsParameter.Value; }
149      set { AgeLimitsParameter.Value = value; }
150    }
151    public ReductionOperation AgeInheritance {
152      get { return AgeInheritanceParameter.Value; }
153      set { AgeInheritanceParameter.Value = value; }
154    }
155    public ISelector Selector {
156      get { return SelectorParameter.Value; }
157      set { SelectorParameter.Value = value; }
158    }
159    public ICrossover Crossover {
160      get { return CrossoverParameter.Value; }
161      set { CrossoverParameter.Value = value; }
162    }
163    public PercentValue MutationProbability {
164      get { return MutationProbabilityParameter.Value; }
165      set { MutationProbabilityParameter.Value = value; }
166    }
167    public IManipulator Mutator {
168      get { return MutatorParameter.Value; }
169      set { MutatorParameter.Value = value; }
170    }
171    public IntValue Elites {
172      get { return ElitesParameter.Value; }
173      set { ElitesParameter.Value = value; }
174    }
175    public bool ReevaluteElites {
176      get { return ReevaluateElitesParameter.Value.Value; }
177      set { ReevaluateElitesParameter.Value.Value = value; }
178    }
179
180    private RandomCreator GlobalRandomCreator {
181      get { return (RandomCreator)OperatorGraph.InitialOperator; }
182    }
183    private SolutionsCreator SolutionsCreator {
184      get { return OperatorGraph.Iterate().OfType<SolutionsCreator>().First(); }
185    }
186    private AlpsGeneticAlgorithmMainLoop MainLoop {
187      get { return OperatorGraph.Iterate().OfType<AlpsGeneticAlgorithmMainLoop>().First(); }
188    }
189
190    #endregion
191
192    #region Preconfigured Analyzers
193    [Storable]
194    private BestAverageWorstQualityAnalyzer qualityAnalyzer;
195    [Storable]
196    private BestAverageWorstQualityAnalyzer layerQualityAnalyzer;
197    #endregion
198
199    [StorableConstructor]
200    private AlpsGeneticAlgorithm(bool deserializing)
201      : base(deserializing) { }
202    private AlpsGeneticAlgorithm(AlpsGeneticAlgorithm original, Cloner cloner)
203      : base(original, cloner) {
204      qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
205      layerQualityAnalyzer = cloner.Clone(original.layerQualityAnalyzer);
206      Initialize();
207    }
208    public override IDeepCloneable Clone(Cloner cloner) {
209      return new AlpsGeneticAlgorithm(this, cloner);
210    }
211    public AlpsGeneticAlgorithm()
212      : base() {
213      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
214      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
215      Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze the islands.", new MultiAnalyzer()));
216      Parameters.Add(new ValueParameter<MultiAnalyzer>("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer()));
217      Parameters.Add(new ValueParameter<IntValue>("NumberOfLayers", "The number of layers.", new IntValue(5)));
218      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions each layer.", new IntValue(20)));
219      Parameters.Add(new ValueParameter<IntValue>("MaximumGenerations", "The maximum number of generations that should be processed.", new IntValue(1000)));
220      Parameters.Add(new ValueParameter<AgingScheme>("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new AgingScheme(AgingSchemes.Polynomial)));
221      Parameters.Add(new ValueParameter<IntValue>("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers", new IntValue(5)));
222      Parameters.Add(new ValueParameter<IntArray>("AgeLimits", new IntArray(new[] { 5, 20, 45, 80, 125 })) { Hidden = true });
223      Parameters.Add(new ValueParameter<ReductionOperation>("AgeInheritance", "The operator for determining the age of an offspring based the parents' age.", new ReductionOperation(ReductionOperations.Max)) { Hidden = true });
224      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
225      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
226      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
227      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
228      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
229      Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
230
231      var globalRandomCreator = new RandomCreator();
232      var layer0Creator = new SubScopesCreator() { Name = "Create Layer Zero" };
233      var layer0Processor = new SubScopesProcessor();
234      var localRandomCreator = new LocalRandomCreator();
235      var layerVariableCreator = new VariableCreator();
236      var layerSolutionsCreator = new SolutionsCreator();
237      var initializeAgeProcessor = new UniformSubScopesProcessor();
238      var initializeAge = new VariableCreator() { Name = "Initialize Age" };
239      var initializeLayerPopulationSize = new SubScopesCounter() { Name = "Init LayerPopulationCounter" };
240      var initializeLocalEvaluatedSolutions = new Assigner() { Name = "Initialize LayerEvaluatedSolutions" };
241      var initializeGlobalEvaluatedSolutions = new DataReducer() { Name = "Initialize EvaluatedSolutions" };
242      var resultsCollector = new ResultsCollector();
243      var mainLoop = new AlpsGeneticAlgorithmMainLoop();
244
245      OperatorGraph.InitialOperator = globalRandomCreator;
246
247      globalRandomCreator.RandomParameter.ActualName = "GlobalRandom";
248      globalRandomCreator.SeedParameter.Value = null;
249      globalRandomCreator.SetSeedRandomlyParameter.Value = null;
250      globalRandomCreator.Successor = layer0Creator;
251
252      layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1);
253      layer0Creator.Successor = layer0Processor;
254
255      layer0Processor.Operators.Add(localRandomCreator);
256      layer0Processor.Successor = initializeGlobalEvaluatedSolutions;
257
258      localRandomCreator.Successor = layerVariableCreator;
259
260      layerVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Layer", new IntValue(0)));
261      //layerVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>("Results", new ResultCollection()));
262      layerVariableCreator.Successor = layerSolutionsCreator;
263
264      layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
265      layerSolutionsCreator.Successor = initializeAgeProcessor;
266
267      initializeAgeProcessor.Operator = initializeAge;
268      initializeAgeProcessor.Successor = initializeLayerPopulationSize;
269
270      initializeLayerPopulationSize.ValueParameter.ActualName = "LayerPopulationSize";
271      initializeLayerPopulationSize.Successor = initializeLocalEvaluatedSolutions;
272
273      initializeAge.CollectedValues.Add(new ValueParameter<IntValue>("Age", new IntValue(0)));
274      initializeAge.Successor = null;
275
276      initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName = "LayerEvaluatedSolutions";
277      initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "LayerPopulationSize";
278      initializeLocalEvaluatedSolutions.Successor = null;
279
280      initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum;
281      initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value = ReductionOperations.Assign;
282      initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName = "LayerEvaluatedSolutions";
283      initializeGlobalEvaluatedSolutions.TargetParameter.ActualName = "EvaluatedSolutions";
284      initializeGlobalEvaluatedSolutions.Successor = resultsCollector;
285
286      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
287      resultsCollector.Successor = mainLoop;
288
289      foreach (var selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name))
290        SelectorParameter.ValidValues.Add(selector);
291      var porportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(s => s is ProportionalSelector);
292      if (porportionalSelector != null) SelectorParameter.Value = porportionalSelector;
293
294      ParameterizeSelectors();
295
296      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
297      layerQualityAnalyzer = new BestAverageWorstQualityAnalyzer();
298      ParameterizeAnalyzers();
299      UpdateAnalyzers();
300
301      Initialize();
302    }
303
304    public override void Prepare() {
305      if (Problem != null)
306        base.Prepare();
307    }
308
309    #region Events
310    protected override void OnProblemChanged() {
311      ParameterizeStochasticOperator(Problem.SolutionCreator);
312      ParameterizeStochasticOperatorForLayer(Problem.Evaluator);
313      foreach (var @operator in Problem.Operators.OfType<IOperator>())
314        ParameterizeStochasticOperator(@operator);
315      ParameterizeSolutionsCreator();
316      ParameterizeMainLoop();
317      ParameterizeSelectors();
318      ParameterizeAnalyzers();
319      ParameterizeIterationBasedOperators();
320      UpdateCrossovers();
321      UpdateMutators();
322      UpdateAnalyzers();
323      Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
324      base.OnProblemChanged();
325    }
326
327    protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
328      ParameterizeStochasticOperator(Problem.SolutionCreator);
329      ParameterizeSolutionsCreator();
330      base.Problem_SolutionCreatorChanged(sender, e);
331    }
332    protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
333      ParameterizeStochasticOperatorForLayer(Problem.Evaluator);
334      ParameterizeSolutionsCreator();
335      ParameterizeMainLoop();
336      ParameterizeSelectors();
337      ParameterizeAnalyzers();
338      Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
339      base.Problem_EvaluatorChanged(sender, e);
340    }
341    protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
342      foreach (var @operator in Problem.Operators.OfType<IOperator>())
343        ParameterizeStochasticOperator(@operator);
344      ParameterizeIterationBasedOperators();
345      UpdateCrossovers();
346      UpdateMutators();
347      UpdateAnalyzers();
348      base.Problem_OperatorsChanged(sender, e);
349    }
350    private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
351      ParameterizeMainLoop();
352      ParameterizeSelectors();
353      ParameterizeAnalyzers();
354    }
355
356    void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
357      PopulationSizeParameter.ValueChanged += PopulationSize_ValueChanged;
358      ParameterizeSelectors();
359    }
360    void PopulationSize_ValueChanged(object sender, EventArgs e) {
361      ParameterizeSelectors();
362    }
363    void ElitesParameter_ValueChanged(object sender, EventArgs e) {
364      Elites.ValueChanged += ElitesParameter_ValueChanged;
365      ParameterizeSelectors();
366    }
367    void Elites_ValueChanged(object sender, EventArgs e) {
368      ParameterizeSelectors();
369    }
370    private void AgeGapParameter_ValueChanged(object sender, EventArgs e) {
371      AgeGap.ValueChanged += AgeGap_ValueChanged;
372      RecalculateAgeLimits();
373    }
374    private void AgeGap_ValueChanged(object sender, EventArgs e) {
375      RecalculateAgeLimits();
376    }
377    private void AgingSchemeParameter_ValueChanged(object sender, EventArgs e) {
378      AgingScheme.ValueChanged += AgingScheme_ValueChanged;
379      RecalculateAgeLimits();
380    }
381    private void AgingScheme_ValueChanged(object sender, EventArgs e) {
382      RecalculateAgeLimits();
383    }
384    private void NumberOfLayersParameter_ValueChanged(object sender, EventArgs e) {
385      NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged;
386      RecalculateAgeLimits();
387    }
388    private void NumberOfLayers_ValueChanged(object sender, EventArgs e) {
389      RecalculateAgeLimits();
390    }
391    #endregion
392
393    #region Parameterization
394    private void Initialize() {
395      PopulationSizeParameter.ValueChanged += PopulationSizeParameter_ValueChanged;
396      PopulationSize.ValueChanged += PopulationSize_ValueChanged;
397      ElitesParameter.ValueChanged += ElitesParameter_ValueChanged;
398      Elites.ValueChanged += Elites_ValueChanged;
399      if (Problem != null)
400        Problem.Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
401      AgeGapParameter.ValueChanged += AgeGapParameter_ValueChanged;
402      AgeGap.ValueChanged += AgeGap_ValueChanged;
403      AgingSchemeParameter.ValueChanged += AgingSchemeParameter_ValueChanged;
404      AgingScheme.ValueChanged += AgingScheme_ValueChanged;
405      NumberOfLayersParameter.ValueChanged += NumberOfLayersParameter_ValueChanged;
406      NumberOfLayers.ValueChanged += NumberOfLayers_ValueChanged;
407    }
408    private void ParameterizeSolutionsCreator() {
409      SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
410      SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
411      MainLoop.LayerUpdator.SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
412      MainLoop.LayerUpdator.SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
413    }
414    private void ParameterizeMainLoop() {
415      MainLoop.MainOperator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
416      MainLoop.MainOperator.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
417      MainLoop.MainOperator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
418      MainLoop.EldersEmigrator.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
419      MainLoop.EldersEmigrator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
420      MainLoop.LayerUpdator.SolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
421    }
422    private void ParameterizeSelectors() {
423      foreach (var selector in SelectorParameter.ValidValues) {
424        selector.CopySelected = new BoolValue(true);
425        selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSize.Value - Elites.Value));
426        selector.NumberOfSelectedSubScopesParameter.Hidden = true;
427        ParameterizeStochasticOperatorForLayer(selector);
428      }
429      if (Problem != null) {
430        foreach (var selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
431          selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
432          selector.MaximizationParameter.Hidden = true;
433          selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
434          selector.QualityParameter.Hidden = true;
435        }
436      }
437    }
438    private void ParameterizeAnalyzers() {
439      qualityAnalyzer.ResultsParameter.ActualName = "Results";
440      qualityAnalyzer.ResultsParameter.Hidden = true;
441      qualityAnalyzer.QualityParameter.Depth = 2;
442      layerQualityAnalyzer.ResultsParameter.ActualName = "Results";
443      layerQualityAnalyzer.ResultsParameter.Hidden = true;
444      layerQualityAnalyzer.QualityParameter.Depth = 1;
445      if (Problem != null) {
446        qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
447        qualityAnalyzer.MaximizationParameter.Hidden = true;
448        qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
449        qualityAnalyzer.QualityParameter.Hidden = true;
450        qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
451        qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
452        layerQualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
453        layerQualityAnalyzer.MaximizationParameter.Hidden = true;
454        layerQualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
455        layerQualityAnalyzer.QualityParameter.Hidden = true;
456        layerQualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
457        layerQualityAnalyzer.BestKnownQualityParameter.Hidden = true;
458      }
459    }
460    private void ParameterizeIterationBasedOperators() {
461      if (Problem != null) {
462        foreach (var @operator in Problem.Operators.OfType<IIterationBasedOperator>()) {
463          @operator.IterationsParameter.ActualName = "Generations";
464          @operator.IterationsParameter.Hidden = true;
465          @operator.MaximumIterationsParameter.ActualName = "MaximumGenerations";
466          @operator.MaximumIterationsParameter.Hidden = true;
467        }
468      }
469    }
470    private void ParameterizeStochasticOperator(IOperator @operator) {
471      var stochasticOperator = @operator as IStochasticOperator;
472      if (stochasticOperator != null) {
473        stochasticOperator.RandomParameter.ActualName = GlobalRandomCreator.RandomParameter.ActualName;
474        stochasticOperator.RandomParameter.Hidden = true;
475      }
476    }
477    private void ParameterizeStochasticOperatorForLayer(IOperator @operator) {
478      var stochasticOperator = @operator as IStochasticOperator;
479      if (stochasticOperator != null) {
480        stochasticOperator.RandomParameter.ActualName = "LocalRandom";
481        stochasticOperator.RandomParameter.Hidden = true;
482      }
483    }
484    #endregion
485
486    #region Updates
487    private void UpdateCrossovers() {
488      var oldCrossover = CrossoverParameter.Value;
489      var defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
490      CrossoverParameter.ValidValues.Clear();
491      foreach (var crossover in Problem.Operators.OfType<ICrossover>().OrderBy(c => c.Name)) {
492        ParameterizeStochasticOperatorForLayer(crossover);
493        CrossoverParameter.ValidValues.Add(crossover);
494      }
495      if (oldCrossover != null) {
496        var crossover = CrossoverParameter.ValidValues.FirstOrDefault(c => c.GetType() == oldCrossover.GetType());
497        if (crossover != null)
498          CrossoverParameter.Value = crossover;
499        else
500          oldCrossover = null;
501      }
502      if (oldCrossover == null && defaultCrossover != null)
503        CrossoverParameter.Value = defaultCrossover;
504    }
505    private void UpdateMutators() {
506      var oldMutator = MutatorParameter.Value;
507      MutatorParameter.ValidValues.Clear();
508      foreach (var mutator in Problem.Operators.OfType<IManipulator>().OrderBy(m => m.Name)) {
509        ParameterizeStochasticOperatorForLayer(mutator);
510        MutatorParameter.ValidValues.Add(mutator);
511      }
512      if (oldMutator != null) {
513        var mutator = MutatorParameter.ValidValues.FirstOrDefault(m => m.GetType() == oldMutator.GetType());
514        if (mutator != null)
515          MutatorParameter.Value = mutator;
516      }
517    }
518    private void UpdateAnalyzers() {
519      Analyzer.Operators.Clear();
520      LayerAnalyzer.Operators.Clear();
521
522      Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
523      LayerAnalyzer.Operators.Add(layerQualityAnalyzer, layerQualityAnalyzer.EnabledByDefault);
524
525      if (Problem != null) {
526        foreach (var analyzer in Problem.Operators.OfType<IAnalyzer>()) {
527          foreach (var parameter in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
528            parameter.Depth = 2;
529          Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
530        }
531      }
532    }
533    #endregion
534
535    #region AgeLimits calculation
536    private void RecalculateAgeLimits() {
537      IEnumerable<int> scheme;
538      switch (AgingScheme.Value) {
539        case AgingSchemes.Linear: scheme = LinearAgingScheme(); break;
540        case AgingSchemes.Fibonacci: scheme = FibonacciAgingScheme(); break;
541        case AgingSchemes.Polynomial: scheme = PolynomialAgingScheme(2); break;
542        case AgingSchemes.Exponential: scheme = ExponentialAgingScheme(2); break;
543        default: throw new NotSupportedException("Aging Scheme " + AgingScheme.Value + " is not supported.");
544      }
545
546      int ageGap = AgeGap.Value;
547      AgeLimits = new IntArray(scheme.Select(a => a * ageGap).Take(NumberOfLayers.Value).ToArray());
548    }
549
550    // 1 2 3 4 5 6 7
551    private static IEnumerable<int> LinearAgingScheme() {
552      for (int i = 0; ; i++)
553        yield return i + 1;
554    }
555    // 1 2 3 5 8 13 21
556    private static IEnumerable<int> FibonacciAgingScheme() {
557      for (int i = 1, next = 2, temp; ; temp = next, next = i + next, i = temp)
558        yield return i;
559    }
560    // (n^2): 1 2 4 9 16 25 36
561    private static IEnumerable<int> PolynomialAgingScheme(double exp) {
562      yield return 1;
563      yield return 2;
564      for (int i = 2; ; i++)
565        yield return (int)Math.Pow(i, exp);
566
567    }
568    // 1 2 4 8 16 32 64
569    private static IEnumerable<int> ExponentialAgingScheme(double @base) {
570      for (int i = 0; ; i++)
571        yield return (int)Math.Pow(@base, i);
572    }
573    #endregion
574  }
575}
Note: See TracBrowser for help on using the repository browser.