1 | using System; |
---|
2 | using System.Collections; |
---|
3 | using System.Collections.Generic; |
---|
4 | |
---|
5 | namespace SimSharp { |
---|
6 | /// <summary> |
---|
7 | /// An implementation of a min-Priority Queue using a heap. Has O(1) .Contains()! |
---|
8 | /// See https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp/wiki/Getting-Started for more information |
---|
9 | /// </summary> |
---|
10 | /// <remarks> |
---|
11 | /// There are modifications so that the type is not generic anymore and can only hold values of type EventQueueNode |
---|
12 | /// </remarks> |
---|
13 | public sealed class EventQueue : IEnumerable<EventQueueNode> { |
---|
14 | private int _numNodes; |
---|
15 | private readonly EventQueueNode[] _nodes; |
---|
16 | private long _numNodesEverEnqueued; |
---|
17 | |
---|
18 | /// <summary> |
---|
19 | /// Instantiate a new Priority Queue |
---|
20 | /// </summary> |
---|
21 | /// <param name="maxNodes">EventQueueNodehe max nodes ever allowed to be enqueued (going over this will cause an exception)</param> |
---|
22 | public EventQueue(int maxNodes) { |
---|
23 | _numNodes = 0; |
---|
24 | _nodes = new EventQueueNode[maxNodes + 1]; |
---|
25 | _numNodesEverEnqueued = 0; |
---|
26 | } |
---|
27 | |
---|
28 | /// <summary> |
---|
29 | /// Returns the number of nodes in the queue. O(1) |
---|
30 | /// </summary> |
---|
31 | public int Count { |
---|
32 | get { |
---|
33 | return _numNodes; |
---|
34 | } |
---|
35 | } |
---|
36 | |
---|
37 | /// <summary> |
---|
38 | /// Returns the maximum number of items that can be enqueued at once in this queue. Once you hit this number (ie. once Count == MaxSize), |
---|
39 | /// attempting to enqueue another item will throw an exception. O(1) |
---|
40 | /// </summary> |
---|
41 | public int MaxSize { |
---|
42 | get { |
---|
43 | return _nodes.Length - 1; |
---|
44 | } |
---|
45 | } |
---|
46 | |
---|
47 | /// <summary> |
---|
48 | /// Removes every node from the queue. O(n) (So, don't do this often!) |
---|
49 | /// </summary> |
---|
50 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
51 | public void Clear() { |
---|
52 | Array.Clear(_nodes, 1, _numNodes); |
---|
53 | _numNodes = 0; |
---|
54 | } |
---|
55 | |
---|
56 | /// <summary> |
---|
57 | /// Returns (in O(1)!) whether the given node is in the queue. O(1) |
---|
58 | /// </summary> |
---|
59 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
60 | public bool Contains(EventQueueNode node) { |
---|
61 | return (_nodes[node.QueueIndex] == node); |
---|
62 | } |
---|
63 | |
---|
64 | /// <summary> |
---|
65 | /// Enqueue a node - .Priority must be set beforehand! O(log n) |
---|
66 | /// </summary> |
---|
67 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
68 | public EventQueueNode Enqueue(DateTime primaryPriority, Event @event, int secondaryPriority = 0) { |
---|
69 | var node = new EventQueueNode { |
---|
70 | PrimaryPriority = primaryPriority, |
---|
71 | SecondaryPriority = secondaryPriority, |
---|
72 | Event = @event, |
---|
73 | QueueIndex = ++_numNodes, |
---|
74 | InsertionIndex = _numNodesEverEnqueued++ |
---|
75 | }; |
---|
76 | _nodes[_numNodes] = node; |
---|
77 | CascadeUp(_nodes[_numNodes]); |
---|
78 | return node; |
---|
79 | } |
---|
80 | |
---|
81 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
82 | private void Swap(EventQueueNode node1, EventQueueNode node2) { |
---|
83 | //Swap the nodes |
---|
84 | _nodes[node1.QueueIndex] = node2; |
---|
85 | _nodes[node2.QueueIndex] = node1; |
---|
86 | |
---|
87 | //Swap their indicies |
---|
88 | int temp = node1.QueueIndex; |
---|
89 | node1.QueueIndex = node2.QueueIndex; |
---|
90 | node2.QueueIndex = temp; |
---|
91 | } |
---|
92 | |
---|
93 | //Performance appears to be slightly better when this is NOT inlined o_O |
---|
94 | private void CascadeUp(EventQueueNode node) { |
---|
95 | //aka Heapify-up |
---|
96 | int parent = node.QueueIndex / 2; |
---|
97 | while (parent >= 1) { |
---|
98 | EventQueueNode parentNode = _nodes[parent]; |
---|
99 | if (HasHigherPriority(parentNode, node)) |
---|
100 | break; |
---|
101 | |
---|
102 | //Node has lower priority value, so move it up the heap |
---|
103 | Swap(node, parentNode); //For some reason, this is faster with Swap() rather than (less..?) individual operations, like in CascadeDown() |
---|
104 | |
---|
105 | parent = node.QueueIndex / 2; |
---|
106 | } |
---|
107 | } |
---|
108 | |
---|
109 | |
---|
110 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
111 | private void CascadeDown(EventQueueNode node) { |
---|
112 | //aka Heapify-down |
---|
113 | EventQueueNode newParent; |
---|
114 | int finalQueueIndex = node.QueueIndex; |
---|
115 | while (true) { |
---|
116 | newParent = node; |
---|
117 | int childLeftIndex = 2 * finalQueueIndex; |
---|
118 | |
---|
119 | //Check if the left-child is higher-priority than the current node |
---|
120 | if (childLeftIndex > _numNodes) { |
---|
121 | //This could be placed outside the loop, but then we'd have to check newParent != node twice |
---|
122 | node.QueueIndex = finalQueueIndex; |
---|
123 | _nodes[finalQueueIndex] = node; |
---|
124 | break; |
---|
125 | } |
---|
126 | |
---|
127 | EventQueueNode childLeft = _nodes[childLeftIndex]; |
---|
128 | if (HasHigherPriority(childLeft, newParent)) { |
---|
129 | newParent = childLeft; |
---|
130 | } |
---|
131 | |
---|
132 | //Check if the right-child is higher-priority than either the current node or the left child |
---|
133 | int childRightIndex = childLeftIndex + 1; |
---|
134 | if (childRightIndex <= _numNodes) { |
---|
135 | EventQueueNode childRight = _nodes[childRightIndex]; |
---|
136 | if (HasHigherPriority(childRight, newParent)) { |
---|
137 | newParent = childRight; |
---|
138 | } |
---|
139 | } |
---|
140 | |
---|
141 | //If either of the children has higher (smaller) priority, swap and continue cascading |
---|
142 | if (newParent != node) { |
---|
143 | //Move new parent to its new index. node will be moved once, at the end |
---|
144 | //Doing it this way is one less assignment operation than calling Swap() |
---|
145 | _nodes[finalQueueIndex] = newParent; |
---|
146 | |
---|
147 | int temp = newParent.QueueIndex; |
---|
148 | newParent.QueueIndex = finalQueueIndex; |
---|
149 | finalQueueIndex = temp; |
---|
150 | } else { |
---|
151 | //See note above |
---|
152 | node.QueueIndex = finalQueueIndex; |
---|
153 | _nodes[finalQueueIndex] = node; |
---|
154 | break; |
---|
155 | } |
---|
156 | } |
---|
157 | } |
---|
158 | |
---|
159 | /// <summary> |
---|
160 | /// Returns true if 'higher' has higher priority than 'lower', false otherwise. |
---|
161 | /// Note that calling HasHigherPriority(node, node) (ie. both arguments the same node) will return false |
---|
162 | /// </summary> |
---|
163 | |
---|
164 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
165 | private bool HasHigherPriority(EventQueueNode higher, EventQueueNode lower) { |
---|
166 | return (higher.PrimaryPriority < lower.PrimaryPriority || |
---|
167 | (higher.PrimaryPriority == lower.PrimaryPriority |
---|
168 | && (higher.SecondaryPriority < lower.SecondaryPriority || |
---|
169 | (higher.SecondaryPriority == lower.SecondaryPriority |
---|
170 | && higher.InsertionIndex < lower.InsertionIndex)))); |
---|
171 | } |
---|
172 | |
---|
173 | /// <summary> |
---|
174 | /// Removes the head of the queue (node with highest priority; ties are broken by order of insertion), and returns it. O(log n) |
---|
175 | /// </summary> |
---|
176 | public EventQueueNode Dequeue() { |
---|
177 | EventQueueNode returnMe = _nodes[1]; |
---|
178 | Remove(returnMe); |
---|
179 | return returnMe; |
---|
180 | } |
---|
181 | |
---|
182 | /// <summary> |
---|
183 | /// Returns the head of the queue, without removing it (use Dequeue() for that). O(1) |
---|
184 | /// </summary> |
---|
185 | public EventQueueNode First { |
---|
186 | get { |
---|
187 | return _nodes[1]; |
---|
188 | } |
---|
189 | } |
---|
190 | |
---|
191 | /// <summary> |
---|
192 | /// This method must be called on a node every time its priority changes while it is in the queue. |
---|
193 | /// <b>Forgetting to call this method will result in a corrupted queue!</b> |
---|
194 | /// O(log n) |
---|
195 | /// </summary> |
---|
196 | |
---|
197 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)] |
---|
198 | public void UpdatePriority(EventQueueNode node, DateTime primaryPriority, int secondaryPriority) { |
---|
199 | node.PrimaryPriority = primaryPriority; |
---|
200 | node.SecondaryPriority = secondaryPriority; |
---|
201 | OnNodeUpdated(node); |
---|
202 | } |
---|
203 | |
---|
204 | internal void OnNodeUpdated(EventQueueNode node) { |
---|
205 | //Bubble the updated node up or down as appropriate |
---|
206 | int parentIndex = node.QueueIndex / 2; |
---|
207 | EventQueueNode parentNode = _nodes[parentIndex]; |
---|
208 | |
---|
209 | if (parentIndex > 0 && HasHigherPriority(node, parentNode)) { |
---|
210 | CascadeUp(node); |
---|
211 | } else { |
---|
212 | //Note that CascadeDown will be called if parentNode == node (that is, node is the root) |
---|
213 | CascadeDown(node); |
---|
214 | } |
---|
215 | } |
---|
216 | |
---|
217 | /// <summary> |
---|
218 | /// Removes a node from the queue. Note that the node does not need to be the head of the queue. O(log n) |
---|
219 | /// </summary> |
---|
220 | public void Remove(EventQueueNode node) { |
---|
221 | if (!Contains(node)) { |
---|
222 | return; |
---|
223 | } |
---|
224 | if (_numNodes <= 1) { |
---|
225 | _nodes[1] = null; |
---|
226 | _numNodes = 0; |
---|
227 | return; |
---|
228 | } |
---|
229 | |
---|
230 | //Make sure the node is the last node in the queue |
---|
231 | bool wasSwapped = false; |
---|
232 | EventQueueNode formerLastNode = _nodes[_numNodes]; |
---|
233 | if (node.QueueIndex != _numNodes) { |
---|
234 | //Swap the node with the last node |
---|
235 | Swap(node, formerLastNode); |
---|
236 | wasSwapped = true; |
---|
237 | } |
---|
238 | |
---|
239 | _numNodes--; |
---|
240 | _nodes[node.QueueIndex] = null; |
---|
241 | |
---|
242 | if (wasSwapped) { |
---|
243 | //Now bubble formerLastNode (which is no longer the last node) up or down as appropriate |
---|
244 | OnNodeUpdated(formerLastNode); |
---|
245 | } |
---|
246 | } |
---|
247 | |
---|
248 | public IEnumerator<EventQueueNode> GetEnumerator() { |
---|
249 | for (int i = 1; i <= _numNodes; i++) |
---|
250 | yield return _nodes[i]; |
---|
251 | } |
---|
252 | |
---|
253 | IEnumerator IEnumerable.GetEnumerator() { |
---|
254 | return GetEnumerator(); |
---|
255 | } |
---|
256 | |
---|
257 | /// <summary> |
---|
258 | /// <b>Should not be called in production code.</b> |
---|
259 | /// Checks to make sure the queue is still in a valid state. Used for testing/debugging the queue. |
---|
260 | /// </summary> |
---|
261 | public bool IsValidQueue() { |
---|
262 | for (int i = 1; i < _nodes.Length; i++) { |
---|
263 | if (_nodes[i] != null) { |
---|
264 | int childLeftIndex = 2 * i; |
---|
265 | if (childLeftIndex < _nodes.Length && _nodes[childLeftIndex] != null && HasHigherPriority(_nodes[childLeftIndex], _nodes[i])) |
---|
266 | return false; |
---|
267 | |
---|
268 | int childRightIndex = childLeftIndex + 1; |
---|
269 | if (childRightIndex < _nodes.Length && _nodes[childRightIndex] != null && HasHigherPriority(_nodes[childRightIndex], _nodes[i])) |
---|
270 | return false; |
---|
271 | } |
---|
272 | } |
---|
273 | return true; |
---|
274 | } |
---|
275 | } |
---|
276 | } |
---|