1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.PluginInfrastructure;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
34 | [NonDiscoverableType]
|
---|
35 | [StorableType("AA3649C4-18CF-480B-AA41-F5D6F148B494")]
|
---|
36 | [Item("BalancedTreeCreator", "An operator that produces trees with a specified distribution")]
|
---|
37 | public class BalancedTreeCreator : SymbolicExpressionTreeCreator {
|
---|
38 | private const string IrregularityBiasParameterName = "IrregularityBias";
|
---|
39 |
|
---|
40 | public IFixedValueParameter<PercentValue> IrregularityBiasParameter {
|
---|
41 | get { return (IFixedValueParameter<PercentValue>)Parameters[IrregularityBiasParameterName]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public double IrregularityBias {
|
---|
45 | get { return IrregularityBiasParameter.Value.Value; }
|
---|
46 | set { IrregularityBiasParameter.Value.Value = value; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected BalancedTreeCreator(StorableConstructorFlag _) : base(_) { }
|
---|
51 |
|
---|
52 | [StorableHook(HookType.AfterDeserialization)]
|
---|
53 | private void AfterDeserialization() {
|
---|
54 | if (!Parameters.ContainsKey(IrregularityBiasParameterName)) {
|
---|
55 | Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, "Allows to bias tree initialization towards less balanced/regular shapes. Set to 0% for most balanced and 100% for least balanced trees. (default = 0%)", new PercentValue(0.0)));
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected BalancedTreeCreator(BalancedTreeCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
60 |
|
---|
61 | public BalancedTreeCreator() {
|
---|
62 | Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, new PercentValue(0.0)));
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
66 | return new BalancedTreeCreator(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth) {
|
---|
70 | return Create(random, grammar, maxLength, maxDepth, IrregularityBias);
|
---|
71 | }
|
---|
72 |
|
---|
73 | public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth, double irregularityBias = 0) {
|
---|
74 | int targetLength = random.Next(3, maxLength); // because we have 2 extra nodes for the root and start symbols, and the end is exclusive
|
---|
75 | return CreateExpressionTree(random, grammar, targetLength, maxDepth, irregularityBias);
|
---|
76 | }
|
---|
77 |
|
---|
78 | public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxDepth, double irregularityBias = 1) {
|
---|
79 | // even lengths cannot be achieved without symbols of odd arity
|
---|
80 | // therefore we randomly pick a neighbouring odd length value
|
---|
81 | var tree = MakeStump(random, grammar); // create a stump consisting of just a ProgramRootSymbol and a StartSymbol
|
---|
82 | CreateExpression(random, tree.Root.GetSubtree(0), targetLength - tree.Length, maxDepth - 2, irregularityBias); // -2 because the stump has length 2 and depth 2
|
---|
83 | return tree;
|
---|
84 | }
|
---|
85 |
|
---|
86 | private static ISymbolicExpressionTreeNode SampleNode(IRandom random, ISymbolicExpressionTreeGrammar grammar, IEnumerable<ISymbol> allowedSymbols, int minChildArity, int maxChildArity) {
|
---|
87 | var candidates = new List<ISymbol>();
|
---|
88 | var weights = new List<double>();
|
---|
89 |
|
---|
90 | foreach (var s in allowedSymbols) {
|
---|
91 | var minSubtreeCount = grammar.GetMinimumSubtreeCount(s);
|
---|
92 | var maxSubtreeCount = grammar.GetMaximumSubtreeCount(s);
|
---|
93 |
|
---|
94 | if (maxChildArity < minSubtreeCount || minChildArity > maxSubtreeCount) { continue; }
|
---|
95 |
|
---|
96 | candidates.Add(s);
|
---|
97 | weights.Add(s.InitialFrequency);
|
---|
98 | }
|
---|
99 | var symbol = candidates.SampleProportional(random, 1, weights).First();
|
---|
100 | var node = symbol.CreateTreeNode();
|
---|
101 | if (node.HasLocalParameters) {
|
---|
102 | node.ResetLocalParameters(random);
|
---|
103 | }
|
---|
104 | return node;
|
---|
105 | }
|
---|
106 |
|
---|
107 | public static void CreateExpression(IRandom random, ISymbolicExpressionTreeNode root, int targetLength, int maxDepth, double irregularityBias = 1) {
|
---|
108 | var grammar = root.Grammar;
|
---|
109 | var minSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol);
|
---|
110 | var maxSubtreeCount = grammar.GetMaximumSubtreeCount(root.Symbol);
|
---|
111 | var arity = random.Next(minSubtreeCount, maxSubtreeCount + 1);
|
---|
112 | int openSlots = arity;
|
---|
113 |
|
---|
114 | var allowedSymbols = grammar.AllowedSymbols.Where(x => !(x is ProgramRootSymbol || x is GroupSymbol || x is Defun || x is StartSymbol)).ToList();
|
---|
115 | bool hasUnarySymbols = allowedSymbols.Any(x => grammar.GetMinimumSubtreeCount(x) <= 1 && grammar.GetMaximumSubtreeCount(x) >= 1);
|
---|
116 |
|
---|
117 | if (!hasUnarySymbols && targetLength % 2 == 0) {
|
---|
118 | // without functions of arity 1 some target lengths cannot be reached
|
---|
119 | targetLength = random.NextDouble() < 0.5 ? targetLength - 1 : targetLength + 1;
|
---|
120 | }
|
---|
121 |
|
---|
122 | var tuples = new List<NodeInfo>(targetLength) { new NodeInfo { Node = root, Depth = 0, Arity = arity } };
|
---|
123 |
|
---|
124 | // we use tuples.Count instead of targetLength in the if condition
|
---|
125 | // because depth limits may prevent reaching the target length
|
---|
126 | for (int i = 0; i < tuples.Count; ++i) {
|
---|
127 | var t = tuples[i];
|
---|
128 | var node = t.Node;
|
---|
129 |
|
---|
130 | for (int childIndex = 0; childIndex < t.Arity; ++childIndex) {
|
---|
131 | // min and max arity here refer to the required arity limits for the child node
|
---|
132 | int minChildArity = 0;
|
---|
133 | int maxChildArity = 0;
|
---|
134 |
|
---|
135 | var allowedChildSymbols = allowedSymbols.Where(x => grammar.IsAllowedChildSymbol(node.Symbol, x, childIndex)).ToList();
|
---|
136 |
|
---|
137 | // if we are reaching max depth we have to fill the slot with a leaf node (max arity will be zero)
|
---|
138 | // otherwise, find the maximum value from the grammar which does not exceed the length limit
|
---|
139 | if (t.Depth < maxDepth - 1 && openSlots < targetLength) {
|
---|
140 |
|
---|
141 | // we don't want to allow sampling a leaf symbol if it prevents us from reaching the target length
|
---|
142 | // this should be allowed only when we have enough open expansion points (more than one)
|
---|
143 | // the random check against the irregularity bias helps to increase shape variability when the conditions are met
|
---|
144 | int minAllowedArity = allowedChildSymbols.Min(x => grammar.GetMaximumSubtreeCount(x));
|
---|
145 | if (minAllowedArity == 0 && (openSlots - tuples.Count <= 1 || random.NextDouble() > irregularityBias)) {
|
---|
146 | minAllowedArity = 1;
|
---|
147 | }
|
---|
148 |
|
---|
149 | // finally adjust min and max arity according to the expansion limits
|
---|
150 | int maxAllowedArity = allowedChildSymbols.Max(x => grammar.GetMaximumSubtreeCount(x));
|
---|
151 | maxChildArity = Math.Min(maxAllowedArity, targetLength - openSlots);
|
---|
152 | minChildArity = Math.Min(minAllowedArity, maxChildArity);
|
---|
153 | }
|
---|
154 |
|
---|
155 | // sample a random child with the arity limits
|
---|
156 | var child = SampleNode(random, grammar, allowedChildSymbols, minChildArity, maxChildArity);
|
---|
157 |
|
---|
158 | // get actual child arity limits
|
---|
159 | minChildArity = Math.Max(minChildArity, grammar.GetMinimumSubtreeCount(child.Symbol));
|
---|
160 | maxChildArity = Math.Min(maxChildArity, grammar.GetMaximumSubtreeCount(child.Symbol));
|
---|
161 | minChildArity = Math.Min(minChildArity, maxChildArity);
|
---|
162 |
|
---|
163 | // pick a random arity for the new child node
|
---|
164 | var childArity = random.Next(minChildArity, maxChildArity + 1);
|
---|
165 | var childDepth = t.Depth + 1;
|
---|
166 | node.AddSubtree(child);
|
---|
167 | tuples.Add(new NodeInfo { Node = child, Depth = childDepth, Arity = childArity });
|
---|
168 | openSlots += childArity;
|
---|
169 | }
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | #region helpers
|
---|
174 | private class NodeInfo {
|
---|
175 | public ISymbolicExpressionTreeNode Node;
|
---|
176 | public int Depth;
|
---|
177 | public int Arity;
|
---|
178 | }
|
---|
179 |
|
---|
180 | private static ISymbolicExpressionTree MakeStump(IRandom random, ISymbolicExpressionGrammar grammar) {
|
---|
181 | SymbolicExpressionTree tree = new SymbolicExpressionTree();
|
---|
182 | var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
|
---|
183 | if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
|
---|
184 | rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
185 |
|
---|
186 | var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
|
---|
187 | if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
|
---|
188 | startNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
189 |
|
---|
190 | rootNode.AddSubtree(startNode);
|
---|
191 | tree.Root = rootNode;
|
---|
192 | return tree;
|
---|
193 | }
|
---|
194 |
|
---|
195 | public void CreateExpression(IRandom random, ISymbolicExpressionTreeNode seedNode, int maxTreeLength, int maxTreeDepth) {
|
---|
196 | CreateExpression(random, seedNode, maxTreeLength, maxTreeDepth, IrregularityBias);
|
---|
197 | }
|
---|
198 | #endregion
|
---|
199 | }
|
---|
200 | }
|
---|