1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion License Information
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Collections.Generic;
|
---|
26 | using System.Linq;
|
---|
27 | using HEAL.Attic;
|
---|
28 | using HeuristicLab.Analysis;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
33 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
34 | using HeuristicLab.Optimization;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.Modifiers {
|
---|
38 | [StorableType("867E0908-9DD4-4924-BB31-10B81B006BE4")]
|
---|
39 | [Item("ModelBasedEvaluationRemoverProblemModifier", " A problem modifier that provides extended Analysis by creating running models (models trained on the evaluations of previous iterations) and analyzing their performance over time")]
|
---|
40 | public abstract class ModelBasedEvaluationRemoverProblemModifier : ProblemModifier {
|
---|
41 | private readonly object locker = new object();
|
---|
42 | #region Properties
|
---|
43 | [Storable]
|
---|
44 | protected ModifiableDataset data;
|
---|
45 | [Storable]
|
---|
46 | protected Dictionary<string, List<double[]>> evaluationsLookUp;
|
---|
47 | [Storable]
|
---|
48 | protected List<Tuple<double[], double[]>> evaluatedThisIteration;
|
---|
49 | [Storable]
|
---|
50 | protected List<Tuple<double[], double[], double[]>> lastPopulation;
|
---|
51 | [Storable]
|
---|
52 | protected List<IRegressionSolution> solutions;
|
---|
53 | [Storable]
|
---|
54 | protected ResultCollection modelingResults;
|
---|
55 | [Storable]
|
---|
56 | protected int iteration;
|
---|
57 | #endregion
|
---|
58 |
|
---|
59 | #region constructors
|
---|
60 | [StorableConstructor]
|
---|
61 | protected ModelBasedEvaluationRemoverProblemModifier(StorableConstructorFlag _) : base(_) { }
|
---|
62 | protected ModelBasedEvaluationRemoverProblemModifier(ModelBasedEvaluationRemoverProblemModifier original, Cloner cloner) : base(original, cloner) {
|
---|
63 | data = cloner.Clone(original?.data);
|
---|
64 | evaluationsLookUp = original?.evaluationsLookUp.ToDictionary(e => e.Key, e => e.Value.Select(o => o.ToArray()).ToList());
|
---|
65 | evaluatedThisIteration = original?.evaluatedThisIteration.Select(x => Tuple.Create(x.Item1.ToArray(), x.Item2.ToArray())).ToList();
|
---|
66 | lastPopulation = original?.lastPopulation.Select(x => Tuple.Create(x.Item1.ToArray(), x.Item2.ToArray(), x.Item3.ToArray())).ToList();
|
---|
67 | solutions = original?.solutions?.Select(cloner.Clone).ToList();
|
---|
68 | iteration = original?.iteration ?? 0;
|
---|
69 | modelingResults = cloner.Clone(original?.modelingResults);
|
---|
70 | }
|
---|
71 | protected ModelBasedEvaluationRemoverProblemModifier() {
|
---|
72 | InitializeDataCollection();
|
---|
73 | }
|
---|
74 | #endregion
|
---|
75 |
|
---|
76 | #region ProblemModifier
|
---|
77 | public override void ModifiedAnalyze(Individual[] individuals, double[][] qualities, ResultCollection results, IRandom random) {
|
---|
78 | lock (locker) {
|
---|
79 | solutions = new List<IRegressionSolution>();
|
---|
80 | for (var i = 0; i < qualities.First().Length; i++) {
|
---|
81 | // model building and prediction
|
---|
82 | var pd = new RegressionProblemData(data, data.VariableNames.Where(v => v.Contains("X")), TargetVariableName(i));
|
---|
83 | pd.TrainingPartition.Start = 0;
|
---|
84 | pd.TrainingPartition.End = pd.TestPartition.Start = data.Rows;
|
---|
85 | pd.TestPartition.End = data.Rows;
|
---|
86 | var sol = BuildRunningModel(pd, random, i);
|
---|
87 | solutions.Add(sol);
|
---|
88 | }
|
---|
89 |
|
---|
90 | var survivors = new HashSet<string>(individuals.Select(ToIdentifier));
|
---|
91 | var newSurvivors = evaluatedThisIteration.Where(x => survivors.Contains(ToIdentifier(x.Item1))).ToArray();
|
---|
92 |
|
---|
93 | AddOrExtendScatterPlot(modelingResults,
|
---|
94 | "Real Evaluations",
|
---|
95 | "objective 1",
|
---|
96 | "objective 2",
|
---|
97 | "iteration" + iteration,
|
---|
98 | evaluatedThisIteration.Select(x => new Point2D<double>(x.Item2[0], x.Item2[1])).ToArray()
|
---|
99 | );
|
---|
100 | AddOrExtendDataTable(modelingResults, "Removal Plot", new[] {
|
---|
101 | Tuple.Create("Total Removed Evaluations", (double) ((IntValue) modelingResults["Removed Evaluations"].Value).Value, false),
|
---|
102 | Tuple.Create("Total Performed Evaluations", (double) ((IntValue) modelingResults["Performed Evaluations"].Value).Value, false),
|
---|
103 | Tuple.Create("Removed Evaluations", (double) ((IntValue) modelingResults["Removed Evaluations (current generation)"].Value).Value, false),
|
---|
104 | Tuple.Create("Performed Evaluations", (double) ((IntValue) modelingResults["Performed Evaluations (current generation)"].Value).Value, false),
|
---|
105 | Tuple.Create("Survived Performed Evaluations", (double) newSurvivors.Length, false)
|
---|
106 | });
|
---|
107 | modelingResults.AddOrUpdateResult("Removed Evaluations (current generation)", new IntValue(0));
|
---|
108 | modelingResults.AddOrUpdateResult("Performed Evaluations (current generation)", new IntValue(0));
|
---|
109 |
|
---|
110 | foreach (var regressionSolution in solutions) {
|
---|
111 | modelingResults.AddOrUpdateResult("model_" + regressionSolution.ProblemData.TargetVariable, regressionSolution);
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | iteration++;
|
---|
116 | lastPopulation = individuals.Zip(qualities, (i, q) => Tuple.Create(
|
---|
117 | ExtractInputs(i),
|
---|
118 | q,
|
---|
119 | solutions.Select(sol => sol.Model.GetEstimatedValues(ToDataset(ExtractInputs(i)), new[] { 0 }).Single()).ToArray()
|
---|
120 | )).ToList();
|
---|
121 | results.AddOrUpdateResult("ModelingResults", modelingResults);
|
---|
122 | lock (evaluatedThisIteration) evaluatedThisIteration.Clear();
|
---|
123 |
|
---|
124 | base.ModifiedAnalyze(individuals, qualities, results, random);
|
---|
125 | }
|
---|
126 | public override double[] ModifiedEvaluate(Individual individual, IRandom random) {
|
---|
127 | if (RemoveEvaluation(individual, Maximization.CloneAsArray(), random)) {
|
---|
128 | lock (locker) {
|
---|
129 | ((IntValue)modelingResults["Removed Evaluations"].Value).Value++;
|
---|
130 | ((IntValue)modelingResults["Removed Evaluations (current generation)"].Value).Value++;
|
---|
131 | }
|
---|
132 | return Maximization.Select(x => x ? double.MinValue : double.MaxValue).ToArray();
|
---|
133 | }
|
---|
134 |
|
---|
135 | var q = base.ModifiedEvaluate(individual, random);
|
---|
136 | lock (locker) {
|
---|
137 | ((IntValue)modelingResults["Performed Evaluations"].Value).Value++;
|
---|
138 | ((IntValue)modelingResults["Performed Evaluations (current generation)"].Value).Value++;
|
---|
139 | ExtendDatasetWithoutDuplicates(new[] { individual }, new[] { q });
|
---|
140 | evaluatedThisIteration.Add(Tuple.Create(ExtractInputs(individual), q.ToArray()));
|
---|
141 | }
|
---|
142 | return q;
|
---|
143 | }
|
---|
144 | #endregion
|
---|
145 |
|
---|
146 | protected abstract IRegressionSolution BuildRunningModel(RegressionProblemData pd, IRandom random, int objectiveNumber);
|
---|
147 | protected abstract bool RemoveEvaluation(Individual individual, bool[] maximization, IRandom random);
|
---|
148 |
|
---|
149 | #region AnalysisHelpers
|
---|
150 | private static void AddOrExtendScatterPlot(ResultCollection results, string resultName, string xLabel, string yLabel, string rowName, IList<Point2D<double>> points) {
|
---|
151 | ScatterPlot plot;
|
---|
152 | if (results.ContainsKey(resultName)) {
|
---|
153 | plot = (ScatterPlot)results[resultName].Value;
|
---|
154 | } else {
|
---|
155 | plot = new ScatterPlot(resultName, "");
|
---|
156 | results.Add(new Result(resultName, plot));
|
---|
157 | plot.VisualProperties.XAxisTitle = xLabel;
|
---|
158 | plot.VisualProperties.YAxisTitle = yLabel;
|
---|
159 | }
|
---|
160 |
|
---|
161 | var row = new ScatterPlotDataRow(rowName, "", points);
|
---|
162 | if (!plot.Rows.ContainsKey(rowName)) plot.Rows.Add(row);
|
---|
163 | else plot.Rows[rowName].Points.AddRange(points);
|
---|
164 | }
|
---|
165 | private static void AddOrExtendDataTable(ResultCollection results, string resultName, IReadOnlyList<Tuple<string, double, bool>> values) {
|
---|
166 | DataTable plot;
|
---|
167 | if (results.ContainsKey(resultName)) {
|
---|
168 | plot = (DataTable)results[resultName].Value;
|
---|
169 | } else {
|
---|
170 | plot = new DataTable(resultName);
|
---|
171 | results.Add(new Result(resultName, plot));
|
---|
172 | plot.VisualProperties.XAxisTitle = "Iteration";
|
---|
173 | plot.VisualProperties.YAxisTitle = "Evaluations";
|
---|
174 | }
|
---|
175 | foreach (var tuple in values) AddOrExtendRow(plot, tuple.Item1, tuple.Item2, tuple.Item3);
|
---|
176 | }
|
---|
177 | private static void AddOrExtendRow(DataTable plot, string rowName, double d, bool secondary = false) {
|
---|
178 | DataRow row;
|
---|
179 | if (plot.Rows.ContainsKey(rowName)) {
|
---|
180 | row = plot.Rows[rowName];
|
---|
181 | } else {
|
---|
182 | row = new DataRow(rowName);
|
---|
183 | plot.Rows.Add(row);
|
---|
184 | }
|
---|
185 | row.Values.Add(d);
|
---|
186 | row.VisualProperties.SecondYAxis = secondary;
|
---|
187 | }
|
---|
188 | #endregion
|
---|
189 |
|
---|
190 | #region DataHandling
|
---|
191 | private void InitializeDataCollection() {
|
---|
192 | lock (locker) {
|
---|
193 | evaluatedThisIteration = new List<Tuple<double[], double[]>>();
|
---|
194 | lastPopulation = new List<Tuple<double[], double[], double[]>>();
|
---|
195 | modelingResults = new ResultCollection();
|
---|
196 | iteration = 0;
|
---|
197 | modelingResults.AddOrUpdateResult("Removed Evaluations", new IntValue(0));
|
---|
198 | modelingResults.AddOrUpdateResult("Performed Evaluations", new IntValue(0));
|
---|
199 | modelingResults.AddOrUpdateResult("Removed Evaluations (current generation)", new IntValue(0));
|
---|
200 | modelingResults.AddOrUpdateResult("Performed Evaluations (current generation)", new IntValue(0));
|
---|
201 | data = new ModifiableDataset();
|
---|
202 | if (evaluationsLookUp == null) evaluationsLookUp = new Dictionary<string, List<double[]>>();
|
---|
203 | evaluationsLookUp.Clear();
|
---|
204 | }
|
---|
205 | }
|
---|
206 | private void ExtendDatasetWithoutDuplicates(IReadOnlyList<Individual> individuals, IReadOnlyList<double[]> qualities) {
|
---|
207 | if (data.Rows == 0) {
|
---|
208 | for (var i = 0; i < ExtractInputs(individuals[0]).Length; i++) {
|
---|
209 | var v = InputVariableName(i);
|
---|
210 | if (!data.DoubleVariables.Contains(v))
|
---|
211 | data.AddVariable(v, new List<double>());
|
---|
212 | }
|
---|
213 | for (var i = 0; i < qualities[0].Length; i++) {
|
---|
214 | var v = TargetVariableName(i);
|
---|
215 | if (!data.DoubleVariables.Contains(v))
|
---|
216 | data.AddVariable(v, new List<double>());
|
---|
217 | }
|
---|
218 | }
|
---|
219 | for (var i = 0; i < individuals.Count; i++) {
|
---|
220 | var ins = ExtractInputs(individuals[i]);
|
---|
221 | var id = ToIdentifier(ins);
|
---|
222 | var outs = qualities[i];
|
---|
223 | if (outs.Any(x => double.IsNaN(x) || double.IsInfinity(x) || double.MaxValue / 100 < x || double.MinValue / 100 > x || x > 100000)) continue;
|
---|
224 | if (evaluationsLookUp.ContainsKey(id) && evaluationsLookUp[id].Any(o => Equals(o, outs))) continue;
|
---|
225 |
|
---|
226 | if (ins.Length + outs.Length != data.DoubleVariables.Count()) throw new ArgumentException("length of individuals and outputs does not match existing data");
|
---|
227 | data.AddRow(ins.Concat(qualities[i]).Select(x => (object)x));
|
---|
228 | if (!evaluationsLookUp.ContainsKey(id)) evaluationsLookUp.Add(id, new List<double[]>() { outs });
|
---|
229 | else { evaluationsLookUp[id].Add(outs); }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | protected static Dataset ToDataset(double[] ins) {
|
---|
233 | return new Dataset(ins.Select((d, i1) => InputVariableName(i1)), ins.Select(d => new List<double>() { d }));
|
---|
234 | }
|
---|
235 | protected static double[] ExtractInputs(Individual individual) {
|
---|
236 | if (!(individual is SingleEncodingIndividual si)) throw new ArgumentException("Multi encodings are not supported with this problem modifier");
|
---|
237 | var e = si[si.Name];
|
---|
238 | switch (e) {
|
---|
239 | case RealVector rv:
|
---|
240 | return rv.CloneAsArray();
|
---|
241 |
|
---|
242 | case IntegerVector iv:
|
---|
243 | return iv.Select(i => (double)i).ToArray();
|
---|
244 |
|
---|
245 | default:
|
---|
246 | throw new ArgumentException("Only Integer and Real Vector Individuals can be transformed to input values");
|
---|
247 | }
|
---|
248 | }
|
---|
249 | #endregion DataHandling
|
---|
250 |
|
---|
251 | #region Naming
|
---|
252 | public static string ToIdentifier(double[] inputs) {
|
---|
253 | return string.Join(";", inputs);
|
---|
254 | }
|
---|
255 | public static string ToIdentifier(Individual i) {
|
---|
256 | return string.Join(";", ExtractInputs(i));
|
---|
257 | }
|
---|
258 | public static string TargetVariableName(int targetNumber) {
|
---|
259 | return "Y" + targetNumber;
|
---|
260 | }
|
---|
261 | public static string InputVariableName(int inputNumber) {
|
---|
262 | return "X" + inputNumber;
|
---|
263 | }
|
---|
264 | #endregion Naming
|
---|
265 | }
|
---|
266 | } |
---|